PIK3CA gene alterations in bladder cancer are frequent and associate with reduced recurrence in non-muscle invasive tumors
Marta Dueñas
Unidad de Oncología Molecular, CIEMAT (ed70A), Madrid, Spain
Search for more papers by this authorMónica Martínez-Fernández
Unidad de Oncología Molecular, CIEMAT (ed70A), Madrid, Spain
Search for more papers by this authorRamón García-Escudero
Unidad de Oncología Molecular, CIEMAT (ed70A), Madrid, Spain
Search for more papers by this authorFelipe Villacampa
Unidad de Uro-Oncología, Hospital Universitario 12 de Octubre, Madrid, Spain
Search for more papers by this authorMiriam Marqués
Epithelial Carcinogenesis Group, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO) Melchor Fernández Almagro, Madrid, Spain
Search for more papers by this authorCristina Saiz-Ladera
Unidad de Oncología Molecular, CIEMAT (ed70A), Madrid, Spain
Search for more papers by this authorJosé Duarte
Unidad de Uro-Oncología, Hospital Universitario 12 de Octubre, Madrid, Spain
Search for more papers by this authorVictor Martínez
Unidad de Uro-Oncología, Hospital Universitario 12 de Octubre, Madrid, Spain
Search for more papers by this authorMª José Gómez
Unidad de Uro-Oncología, Hospital Universitario 12 de Octubre, Madrid, Spain
Search for more papers by this authorMª Luisa Martín
Unidad de Uro-Oncología, Hospital Universitario 12 de Octubre, Madrid, Spain
Search for more papers by this authorManoli Fernández
Unidad de Uro-Oncología, Hospital Universitario 12 de Octubre, Madrid, Spain
Search for more papers by this authorDaniel Castellano
Unidad de Uro-Oncología, Hospital Universitario 12 de Octubre, Madrid, Spain
Search for more papers by this authorFrancisco X. Real
Epithelial Carcinogenesis Group, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO) Melchor Fernández Almagro, Madrid, Spain
Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
Search for more papers by this authorJose L. Rodriguez-Peralto
Servicio de Anatomía Patológica, Centro de Investigación Hospital Universitario 12 de Octubre, Madrid, Spain
Search for more papers by this authorFederico De La Rosa
Unidad de Uro-Oncología, Hospital Universitario 12 de Octubre, Madrid, Spain
Search for more papers by this authorCorresponding Author
Jesús M. Paramio
Unidad de Oncología Molecular, CIEMAT (ed70A), Madrid, Spain
Correspondence to: Department of Basic Research, CIEMAT (ed 70A), Ave Complutense 40; E 28040 Madrid, Spain.Search for more papers by this authorMarta Dueñas
Unidad de Oncología Molecular, CIEMAT (ed70A), Madrid, Spain
Search for more papers by this authorMónica Martínez-Fernández
Unidad de Oncología Molecular, CIEMAT (ed70A), Madrid, Spain
Search for more papers by this authorRamón García-Escudero
Unidad de Oncología Molecular, CIEMAT (ed70A), Madrid, Spain
Search for more papers by this authorFelipe Villacampa
Unidad de Uro-Oncología, Hospital Universitario 12 de Octubre, Madrid, Spain
Search for more papers by this authorMiriam Marqués
Epithelial Carcinogenesis Group, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO) Melchor Fernández Almagro, Madrid, Spain
Search for more papers by this authorCristina Saiz-Ladera
Unidad de Oncología Molecular, CIEMAT (ed70A), Madrid, Spain
Search for more papers by this authorJosé Duarte
Unidad de Uro-Oncología, Hospital Universitario 12 de Octubre, Madrid, Spain
Search for more papers by this authorVictor Martínez
Unidad de Uro-Oncología, Hospital Universitario 12 de Octubre, Madrid, Spain
Search for more papers by this authorMª José Gómez
Unidad de Uro-Oncología, Hospital Universitario 12 de Octubre, Madrid, Spain
Search for more papers by this authorMª Luisa Martín
Unidad de Uro-Oncología, Hospital Universitario 12 de Octubre, Madrid, Spain
Search for more papers by this authorManoli Fernández
Unidad de Uro-Oncología, Hospital Universitario 12 de Octubre, Madrid, Spain
Search for more papers by this authorDaniel Castellano
Unidad de Uro-Oncología, Hospital Universitario 12 de Octubre, Madrid, Spain
Search for more papers by this authorFrancisco X. Real
Epithelial Carcinogenesis Group, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO) Melchor Fernández Almagro, Madrid, Spain
Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
Search for more papers by this authorJose L. Rodriguez-Peralto
Servicio de Anatomía Patológica, Centro de Investigación Hospital Universitario 12 de Octubre, Madrid, Spain
Search for more papers by this authorFederico De La Rosa
Unidad de Uro-Oncología, Hospital Universitario 12 de Octubre, Madrid, Spain
Search for more papers by this authorCorresponding Author
Jesús M. Paramio
Unidad de Oncología Molecular, CIEMAT (ed70A), Madrid, Spain
Correspondence to: Department of Basic Research, CIEMAT (ed 70A), Ave Complutense 40; E 28040 Madrid, Spain.Search for more papers by this authorAbstract
Bladder cancer (BC) is the fifth most common cancer in the world, being the non-muscle invasive tumors (NMIBC) the most frequent. NMIBC shows a very high frequency of recurrence and, in certain cases, tumor progression. The phosphatidylinositol 3-kinase (PI3K) pathway, which controls cell growth, tumorigenesis, cell invasion and drug response, is frequently activated in numerous human cancers, including BC, in part through alterations of PIK3CA gene. However, the significance of PIK3CA gene alterations with respect to clinicopathological characteristics, and in particular tumor recurrence and progression, remains elusive. Here, we analyzed the presence of mutations in FGFR3 and PIK3CA genes and copy number alterations of PIK3CA gene in bladder tumor and their correspondent paired normal samples from 87 patients. We observed an extremely high frequency of PIK3CA gene alterations (mutations, copy gains, or both) in tumor samples, affecting primarily T1 and T2 tumors. A significant number of normal tissues also showed mutations and copy gains, being coincident with those found in the corresponding tumor sample. In low-grade tumors PIK3CA mutations associated with FGFR3 mutations. Alterations in PIK3CA gene resulted in increased Akt activity in tumors. Interestingly, the presence of PIK3CA gene alterations, and in particular gene mutations, is significantly associated with reduced recurrence of NMIBC patients. Importantly, the presence of FGFR3 mutations may influence the clinical outcome of patients bearing alterations in PIK3CA gene, and increased recurrence was associated to FGFR3 mutated, PIK3CA wt tumors. These findings may have high relevance in terms of using PI3K-targeted therapies for BC treatment. © 2013 Wiley Periodicals, Inc.
Supporting Information
Additional supporting information may be found in the online version of this article at the publisher's web-site.
Filename | Description |
---|---|
mc22125-sup-0001-SuppData-S1.pdf220.9 KB | Figure S1. Kaplan–Meier distributions of patient recurrence according to tumor stage, tumor grade, tumor size or number of tumor implants. P values were obtained by the log-rank test. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.
- 2 Chen M, Cassidy A, Gu J, et al. Genetic variations in PI3K-AKT-mTOR pathway and bladder cancer risk. Carcinogenesis 2009; 30: 2047–2052.
- 3 Ching CB, Hansel DE. Expanding therapeutic targets in bladder cancer: The PI3K/Akt/mTOR pathway. Lab Invest 2010; 90: 1406–1414.
- 4 Prasad SM, Decastro GJ, Steinberg GD. Urothelial carcinoma of the bladder: Definition, treatment and future efforts. Nat Rev Urol 2011; 8: 631–642.
- 5 Luis NM, Lopez-Knowles E, Real FX. Molecular biology of bladder cancer. Clin Transl Oncol 2007; 9: 5–12.
- 6 Castillo-Martin M, Domingo-Domenech J, Karni-Schmidt O, Matos T, Cordon-Cardo C. Molecular pathways of urothelial development and bladder tumorigenesis. Urol Oncol 2010; 28: 401–408.
- 7 Castellano D, Carles J, Esteban E, et al. Recommendations for the optimal management of early and advanced urothelial carcinoma. Cancer Treat Rev 2012; 38: 431–441.
- 8 Bischoff CJ, Clark PE. Bladder cancer. Curr Opin Oncol 2009; 21: 272–277.
- 9 Netto GJ. Molecular biomarkers in urothelial carcinoma of the bladder: Are we there yet? Nat Rev Urol 2011; 9: 41–51.
- 10 Knowles MA, Platt FM, Ross RL, Hurst CD. Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer. Cancer Metastasis Rev 2009; 28: 305–316.
- 11 Platt FM, Hurst CD, Taylor CF, Gregory WM, Harnden P, Knowles MA. Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer. Clin Cancer Res 2009; 15: 6008–6017.
- 12 Cantley LC. The phosphoinositide 3-kinase pathway. Science (New York, NY) 2002; 296: 1655–1657.
- 13 Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol 2010; 28: 1075–1083.
- 14 Engelman JA. Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat Rev Cancer 2009; 9: 550–562.
- 15 Juric D, Baselga J. Tumor genetic testing for patient selection in phase I clinical trials: The case of PI3K inhibitors. J Clin Oncol 2012; 30: 765–766
- 16 Lopez-Knowles E, Hernandez S, Malats N, et al. PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Res 2006; 66: 7401–7404.
- 17 Alonso SR, Ortiz P, Pollan M, et al. Progression in cutaneous malignant melanoma is associated with distinct expression profiles: A tissue microarray-based study. Am J Pathol 2004; 164: 193–203.
- 18 Rimm DL, Camp RL, Charette LA, Costa J, Olsen DA, Reiss M. Tissue microarray: A new technology for amplification of tissue resources. Cancer J 2001; 7: 24–31.
- 19 Moral M, Segrelles C, Lara MF, et al. Akt activation synergizes with Trp53 loss in oral epithelium to produce a novel mouse model for head and neck squamous cell carcinoma. Cancer Res 2009; 69: 1099–1108.
- 20 Hurst CD, Zuiverloon TC, Hafner C, Zwarthoff EC, Knowles MA. A SNaPshot assay for the rapid and simple detection of four common hotspot codon mutations in the PIK3CA gene. BMC Res Notes 2009; 2: 66.
- 21 Hafner C, Lopez-Knowles E, Luis NM, et al. Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern. Proc Natl Acad Sci USA 2007; 104: 13450–13454.
- 22 Hafner C, van Oers JM, Vogt T, et al. Mosaicism of activating FGFR3 mutations in human skin causes epidermal nevi. J Clin Invest 2006; 116: 2201–2207.
- 23 Ohl F, Jung M, Radonic A, Sachs M, Loening SA, Jung K. Identification and validation of suitable endogenous reference genes for gene expression studies of human bladder cancer. J Urol 2006; 175: 1915–1920.
- 24 Kumar A, Redondo-Munoz J, Perez-Garcia V, Cortes I, Chagoyen M, Carrera AC. Nuclear but not cytosolic phosphoinositide 3-kinase beta has an essential function in cell survival. Mol Cell Biol 2011; 31: 2122–2133.
- 25 Marques M, Kumar A, Poveda AM, et al. Specific function of phosphoinositide 3-kinase beta in the control of DNA replication. Proc Natl Acad Sci USA 2009; 106: 7525–7530.
- 26 Hollander MC, Blumenthal GM, Dennis PA. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 2011; 11: 289–301.
- 27 Bunney TD, Katan M. Phosphoinositide signalling in cancer: Beyond PI3K and PTEN. Nat Rev Cancer 2010; 10: 342–352.
- 28 Wong KK, Engelman JA, Cantley LC. Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev 2010; 20: 87–90.
- 29 Markman B, Atzori F, Perez-Garcia J, Tabernero J, Baselga J. Status of PI3K inhibition and biomarker development in cancer therapeutics. Ann Oncol 2010; 21: 683–691.
- 30 Lindgren D, Frigyesi A, Gudjonsson S, et al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res 2010; 70: 3463–3472.
- 31 Nishiyama N, Arai E, Nagashio R, et al. Copy number alterations in urothelial carcinomas: Their clinicopathological significance and correlation with DNA methylation alterations. Carcinogenesis 2011; 32: 462–469.
- 32 Bonberg N, Taeger D, Gawrych K, et al. Chromosomal instability and bladder cancer: The UroVysion(TM) test in the UroScreen study. BJU Int 2013; 112: E372–E382.
- 33 Hussenet T, Dali S, Exinger J, et al. SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas. PLoS ONE 2010; 5: e8960.
- 34 Cizkova M, Susini A, Vacher S, et al. PIK3CA mutation impact on survival in breast cancer patients and in ERalpha, PR and ERBB2-based subgroups. Breast Cancer Res 2013; 14: R28.
- 35 Loi S, Haibe-Kains B, Majjaj S, et al. PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer. Proc Natl Acad Sci USA 2010; 107: 10208–10213.
- 36 Kalinsky K, Jacks LM, Heguy A, et al. PIK3CA mutation associates with improved outcome in breast cancer. Clin Cancer Res 2009; 15: 5049–5059.
- 37 Jehan Z, Bavi P, Sultana M, et al. Frequent PIK3CA gene amplification and its clinical significance in colorectal cancer. J Pathol 2009; 219: 337–346.
- 38 Woenckhaus J, Steger K, Werner E, et al. Genomic gain of PIK3CA and increased expression of p110alpha are associated with progression of dysplasia into invasive squamous cell carcinoma. J Pathol 2002; 198: 335–342.
- 39 Woenckhaus J, Steger K, Sturm K, Munstedt K, Franke FE, Fenic I. Prognostic value of PIK3CA and phosphorylated AKT expression in ovarian cancer. Virchows Arch 2007; 450: 387–395.
- 40 Shi J, Yao D, Liu W, et al. Highly frequent PIK3CA amplification is associated with poor prognosis in gastric cancer. BMC Cancer 2012; 12: 50.
- 41 Korkolopoulou P, Levidou G, Trigka EA, et al. A comprehensive immunohistochemical and molecular approach to the PI3K/AKT/mTOR (phosphoinositide 3-kinase/v-akt murine thymoma viral oncogene/mammalian target of rapamycin) pathway in bladder urothelial carcinoma. BJU Int 2012; 110: E1237–E1248.
- 42 Lindgren D, Liedberg F, Andersson A, et al. Molecular characterization of early-stage bladder carcinomas by expression profiles, FGFR3 mutation status, and loss of 9q. Oncogene 2006; 25: 2685–2696.
- 43 Hernandez S, Lopez-Knowles E, Lloreta J, et al. FGFR3 and Tp53 mutations in T1G3 transitional bladder carcinomas: Independent distribution and lack of association with prognosis. Clin Cancer Res 2005; 11: 5444–5450.
- 44 Jebar AH, Hurst CD, Tomlinson DC, Johnston C, Taylor CF, Knowles MA. FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene 2005; 24: 5218–5225.
- 45 Hernandez S, Lopez-Knowles E, Lloreta J, et al. Prospective study of FGFR3 mutations as a prognostic factor in nonmuscle invasive urothelial bladder carcinomas. J Clin Oncol 2006; 24: 3664–3671.
- 46 Ross RL, Askham JM, Knowles MA. PIK3CA mutation spectrum in urothelial carcinoma reflects cell context-dependent signaling and phenotypic outputs. Oncogene 2013; 32: 768–776.
- 47 di Martino E, L'Hote CG, Kennedy W, Tomlinson DC, Knowles MA. Mutant fibroblast growth factor receptor 3 induces intracellular signaling and cellular transformation in a cell type- and mutation-specific manner. Oncogene 2009; 28: 4306–4316.
- 48 Zhao L, Vogt PK. Class I PI3K in oncogenic cellular transformation. Oncogene 2008; 27: 5486–5496.
- 49 Zhao L, Vogt PK. Helical domain and kinase domain mutations in p110alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci USA 2008; 105: 2652–2657.