Simplification of Hyperelastic Constitutive Model and Finite Element Analysis of Thermoplastic Polyurethane Elastomers
Yingzhu Wang
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Weiang Luo
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJunwen Huang
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorChaohua Peng
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorHongchao Wang
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorConghui Yuan
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorGuorong Chen
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorBirong Zeng
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Lizong Dai
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYingzhu Wang
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Weiang Luo
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorJunwen Huang
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorChaohua Peng
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorHongchao Wang
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorConghui Yuan
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorGuorong Chen
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorBirong Zeng
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005 China
Search for more papers by this authorCorresponding Author
Lizong Dai
Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
In this work, the simplified hyperelastic constitutive model and finite element analysis of thermoplastic polyurethane elastomers (TPUs) under uniaxial tension are studied. Based on a series of classical strain energy density function of hyperelastic materials, a “one-step” transformation algorithm from standard test data to the simplest constitutive model is proposed and a three-parameter simplified constitutive model is obtained. The simplified model has a high accuracy on the experimentally determined load–displacement curve with fitting errors of 0.95%, 0.81%, and 0.98% to three TPUs comprising different hard segment contents of 15.19, 22.54, and 38.51 wt%, respectively. By combining the simplified hyperelastic constitutive model with the finite element analysis, the mechanical behavior of TPUs in uniaxial tensile state is predicted accurately. The simplification algorithm and simulation method may be applicable to other hyperelastic materials with more complex shapes and working conditions and have certain practical engineering guiding significance for the subsequent material selection, design, and production.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1H. Cho, S. Mayer, E. Poselt, M. Susoff, P. J. in’t Veld, G. C. Rutledge, M. C. Boyce, Polymer 2017, 128, 87.
- 2J. A. Fritz Fidel Rocco, J. E. Salgueiro Lima, V. L. Lourenco, N. L. Batista, E. C. Botelho, K. Iha, J. Appl. Polym. Sci. 2012, 126, 1461.
- 3Z. H. Li, J. Lambros, Int. J. Solids Struct. 2001, 38, 3549.
- 4Y. L. Wang, J. Hao, Z. Q. Huang, G. Q. Zheng, K. Dai, C. T. Liu, C. Y. Shen, Carbon 2018, 126, 360.
- 5Y.-C. Chien, W.-T. Chuang, U. S. Jeng, S.-H. Hsu, ACS Appl. Mater. Interfaces 2017, 9, 5419.
- 6C. P. Buckley, C. Prisacariu, C. Martin, Polymer 2010, 51, 3213.
- 7C. H. Y. Chentsai, E. L. Thomas, W. J. Macknight, N. S. Schneider, Polymer 1986, 27, 659.
- 8F. Feng, L. Ye, J. Appl. Polym. Sci. 2011, 119, 2778.
- 9T. Choi, D. Fragiadakis, C. M. Roland, J. Runt, Macromolecules 2012, 45, 3581.
- 10S. Iniguez-Macedo, R. Lostado-Lorza, R. Escribano-Garcia, M. Angeles Martinez-Calvo, Materials 2019, 12, 1019.
- 11H. G. Kilian, Colloid Polym. Sci. 1985, 263, 30.
- 12E. M. Arruda, M. C. Boyce, J. Mech. Phys. Solids 1993, 41, 389.
- 13M. Mooney, J. Appl. Phys. 1940, 11, 582.
- 14R. S. Rivlin, Philos. Trans. R. Soc. A 1948, 241, 379.
- 15A. N. Gent, Rubber Chem. Technol. 1996, 69, 59.
- 16R. W. Ogden, Proc. R. Soc. London, Ser. A 1972, 326, 565.
- 17Q. Zhao, H. J. Qi, T. Xie, Prog. Polym. Sci. 2015, 49–50, 79.
- 18L. Hoss, R. J. Marczak, Mec. Comput. 2010, 29, 2759.
- 19G. Marckmann, E. Verron, Rubber Chem. Technol. 2006, 79, 835.
- 20C. Wex, S. Arndt, A. Stoll, C. Bruns, Y. Kupriyanova, Biomed. Tech. 2015, 60, 577.
- 21A. Isihara, N. Hashitsume, M. Tatibana, J. Chem. Phys. 1951, 19, 1508.
- 22R. W. Ogden, Non-Linear Elastic Deformations, Dover, Mineola, NY 1997.
- 23R. Hao, D. X. Li, Adv. Eng. Mater. 2019, 21, 1900095.
- 24M. Knezevic, I. J. Beyerlein, Adv. Eng. Mater. 2018, 20, 1700956.
- 25P. Moseley, J. M. Florez, H. A. Sonar, G. Agarwal, W. Curtin, J. Paik, Adv. Eng. Mater. 2016, 18, 978.
- 26R. Bouaziz, K. Prashantha, F. Roger, Mech. Adv. Mater. Struct. 2019, 26, 1209.
- 27R. Bouaziz, F. Roger, K. Prashantha, Smart Mater. Struct. 2017, 26, 055009.
- 28S. Kim, H. Shin, S. Rhim, K. Y. Rhee, Composites, Part B 2019, 163, 297.
- 29P. Fan, W. Chen, B. Zhao, J. Hu, J. Gao, G. Fang, F. Peng, Polymer 2018, 148, 370.
- 30Y. Xiang, D. Zhong, P. Wang, T. Yin, H. Zhou, H. Yu, C. Baliga, S. Qu, W. Yang, J. Mech. Phys. Solids 2019, 128, 208.
- 31M. Timmel, S. Kolling, P. Osterrieder, P. Du Bois, Int. J. Impact. Eng. 2007, 34, 1465.
- 32N. W. Tschoegl, J. Polym. Sci., Part A-1: Polym. Chem. 1971, 9, 1959.
- 33R. W. Ogden, G. Saccomandi, I. Sgura, Comput. Mech. 2004, 34, 484.
- 34K. Hibbitt, Sorensen, Inc., Abaqus Online Documentation 6.14, http://ivtabaqusdoc.ivt.ntnu.no:2080/v6.14/index.html (accessed: 2014).
- 35O. H. Yeoh, P. Fleming, J. Polym. Sci., Part B: Polym. Phys. 1997, 35, 1919.
10.1002/(SICI)1099-0488(19970915)35:12<1919::AID-POLB7>3.0.CO;2-K CAS Web of Science® Google Scholar
- 36O. H. Yeoh, Rubber Chem. Technol. 1993, 66, 754.
- 37G. Chagnon, G. Marckmann, E. Verron, Rubber Chem. Technol. 2004, 77, 724.
- 38H. Shin, J. B. Kim, S. J. Kim, K. Y. Rhee, Comput. Mater. Sci. 2015, 100, 31.
- 39J. B. Kim, H. Shin, Int. J. Impact. Eng. 2009, 36, 746.
- 40A. Isihara, N. Hashitsume, M. Tatibana, J. Chem. Phys. 1951, 19, 1508.