Copolymer Nanocomposite Thin-Films Under Shear
Corresponding Author
Lenin S. Shagolsem
Department of Physics National Institute of Technology Manipur, Imphal 795004, India
Search for more papers by this authorTorsten Kreer
Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
Search for more papers by this authorJens-Uwe Sommer
Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
Institute of Theoretical Physics Technische Universität Dresden, Germany
Search for more papers by this authorCorresponding Author
Lenin S. Shagolsem
Department of Physics National Institute of Technology Manipur, Imphal 795004, India
Search for more papers by this authorTorsten Kreer
Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
Search for more papers by this authorJens-Uwe Sommer
Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
Institute of Theoretical Physics Technische Universität Dresden, Germany
Search for more papers by this authorAbstract
By means of molecular dynamics simulations, we study the behaviour of lamellae forming diblock copolymer and nanoparticle mixtures in thin-film geometry under stationary shear. In particular, we investigate the system under transverse mode of shear considering both nonselective and selective types of nanoparticles. We find that the presence of nanoparticles affects the critical shear rate at which the lamellar morphology is not stable during transverse shear and orientation transition sets in. We also study the spatial distribution of nanoparticles in the presence of flow field and its effect on the macroscopic response of the system.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1
I. W. Hamley,
The Physics of Block Copolymers, vol. 19,
Oxford University Press,
New York
1998.
10.1093/oso/9780198502180.001.0001 Google Scholar
- 2 F. S. Bates, G. H. Fredrickson, Phys. Today 1999, 52, 32.
- 3 I. W. Hamley, Ang. Chem. Int. Ed. 2003, 42, 1692.
- 4 R. M. Choueiri, et al., Nature 2016, https://doi.org/10.1038/nature19089.
- 5 G. Ozaydin-Ince, A. M. Coclite, K. K. Gleason, Rep. Prog. Phys. 2012, 75, 016501.
- 6 B. Kippelen, J.-L. Bredas, Energy Environ. Sci. 2009, 2, 251.
- 7 S. B. Darling, Energy Environ. Sci. 2009, 2, 1266.
- 8 Y. Zhao, et al., Nat. Mater. 2009, 8, 979.
- 9 J. Chai, D. Wang, X. Fan, J. M. Buriak, Nat. Nanotechnol. 2007, 2, 500.
- 10 M. R. Bockstaller, R. A. Mickiewicz, E. L. Thomas, Adv. Mater. 2005, 17, 1331.
- 11 R. Mezzenga, J. Ruokolainen, Nat. Mater. 2009, 8, 926.
- 12 S. Sakurai, Polymer 2008, 49, 2781.
- 13 P. Mandare, H. H. Winter, Rheol. Acta 2007, 46, 1161.
- 14 Z. R. Chen, et al., Science 1997, 277, 1248.
- 15 C. C. Honeker, E. L. Thomas, Chem. Mater. 1996, 8, 1702.
- 16 E. Di Cola, C. Fleury, P. Panine, M. Cloitre, Macromolecules 2008, 41, 3627.
- 17 J. L. Zryd, W. R. Burghardt, Macromolecules 1998, 31, 3656.
- 18 H. Leist, K. Geiger, U. Wiesner, Macromolecules 1999, 32, 1315.
- 19 S. Okamoto, K. Saijo, T. Hashimoto, Macromolecules 1994, 27, 5547.
- 20 K. Hyun, et al., Prog. Polym. Sci. 2011, 36, 1697.
- 21 I. W. Hamley, J. Phys.: Condens. Matter 2001, 13, R643.
- 22 I. Rychkov, Macromol. Theo. Simul. 2005, 14, 207.
- 23 C.-Y. Huang, M. Muthukumar, J. Chem. Phys. 1997, 107, 5561.
- 24 K. A. Koppi, M. Tirrell, F. S. Bates, Phys. Rev. Lett. 1993, 70, 1449.
- 25 D. A. Hajduk, et al., J. Chem. Phys. 1998, 108, 326.
- 26 R. J. Albalak, E. L. Thomas, J. Polym. Sci. B: Polym. Phys. 1993, 31, 37.
- 27 R. M. Kannan, J. A. Kornfield, Macromolecules 1994, 27, 1177.
- 28 H. Guo, J. Chem. Phys. 2006, 124, 054902; J. Chem. Phys. 2006, 125, 214902.
- 29 O. O. Mykhaylyk, et al., Macromolecules 2012, 45, 5260.
- 30 A. N. Morozov, A. V. Zvelindovsky, J. G. E. M. Fraaije, Phys. Rev. E 2000, 61, 4125.
- 31 A. N. Morozov, J. G. E. M. Fraaije, Phys. Rev. E 2002, 65, 031803.
- 32 I. W. Hamley, et al., Phys. Rev. E 1998, 58, 7620.
- 33 S. R. Ren, et al., Phys. Rev. E 2001, 63, 041503.
- 34 A. Xu, et al., Europhys. Lett. 2005, 71, 651.
- 35 L. Qiao, K. I. Winey, Macromolecules 2000, 33, 851.
- 36 L. S. Shagolsem, et al., J. Chem. Phys. 2016, 145, 164908.
- 37 K. Kremer, G. S. Grest, J. Chem. Phys. 1990, 92, 5057.
- 38 M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids. Oxford University Press, 1989.
- 39
D. Frenkel,
B. Smit,
Understanding Molecular Simulation: from Algorithms to Applications. Computational sciences series
2002, pp. 1–638.
10.1016/B978-012267351-1/50003-1 Google Scholar
- 40 P. Espanol, P. Warren, Europhys. Lett. 1995, 30, 191.
- 41 R. D. Groot, P. B. Warren, J. Chem. Phys. 1997, 107, 4423.
- 42 L. S. Shagolsem, J.-U. Sommer, Macromol. Theo. Simul. 2011, 20, 329.