Olympic Gels: Concatenation and Swelling
Corresponding Author
Michael Lang
Leibniz Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
Search for more papers by this authorJakob Fischer
Leibniz Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
Search for more papers by this authorMarco Werner
Leibniz Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
Search for more papers by this authorJens-Uwe Sommer
Leibniz Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
Search for more papers by this authorCorresponding Author
Michael Lang
Leibniz Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
Search for more papers by this authorJakob Fischer
Leibniz Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
Search for more papers by this authorMarco Werner
Leibniz Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
Search for more papers by this authorJens-Uwe Sommer
Leibniz Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany
Search for more papers by this authorSummary
Concatenation and equilibrium swelling of Olympic gels, which are composed of entangled cyclic polymers, is studied under athermal conditions with Monte-Carlo simulations. The average number of concatenated molecules per cyclic polymer, fn, is found to depend on the degree of polymerization, N, and polymer volume fraction at network preparation, , as
with scaling exponent v = 0.588. In contrast to chemically cross-linked polymer networks, we observe that Olympic gels made of longer cyclic chains exhibit a smaller equilibrium swelling degree,
, at the same polymer volume fraction
. This observation is explained by a des-interspersion process of overlapping non-concatenated rings upon swelling, which is tested directly by analyzing the change in overlap of the molecules upon swelling.
References
- 1 E. Raphael, C. Gay, P. G. de Gennes, J. Stat. Phys. 1997, 89, 111.
- 2 G. T. Pickett, Europhys. Lett. 2006, 76, 616.
- 3 P. G. De Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca 1979.
- 4 M. Rubinstein, J. Pol. Sci. B 2010, 48, 2548.
- 5 M. Kapnistos, M. Lang, D. Vlassopoulos, W. Pyckhout-Hintzen, D. Richter, D. Cho, T. Chang, M. Rubinstein, Nat. Mater. 2008, 7, 997.
- 6 J. E. Mark, New. J. Chem. 1993, 17, 703.
- 7 M. Bohn, D. W. Heermann, J. Chem. Phys. 2010, 132, 044904.
- 8 M. Bohn, D. W. Heermann, O. Lourenco, C. Cordeiro, Macromolecules 2010, 43, 2564.
- 9 A. Narros, A. J. Moreno, C. N. Likos, Biochem. Soc. Trans. 2013, 41, 630.
- 10 M. Lang, J. Fischer, J.-U. Sommer, Macromolecules 2012, 45, 7642.
- 11 J. Lukes, D. L. Guilbride, J. Votypka, A. Zikova, R. Benne, P. T. Englund, Eukaryot. Cell 2002, 1, 495.
- 12 B. Liu, Y. Liu, S. A. Motyka, E. E. C. Agbo, P. T. Englund, Trends Parasitol. 2005, 21, 363.
- 13 Y. Diao, K. Hinson, R. Kaplan, M. Vasquez, J. Arsuaga, J. Math. Biol. 2012, 64, 1087.
- 14 J. Arsuaga, Y. Diao, K. Hinson, J. Stat. Phys. 2012, 146, 434.
- 15 Y. Diao, K. Hinson, J. Arsuaga, J. Phys. A 2012, 45, 035004.
- 16 M. Lang, J. Fischer, M. Werner, J.-U. Sommer, Phys. Rev. Lett. 2014, 112, 238001.
- 17 S. Nedelcu, M. Werner, M. Lang, J.-U. Sommer, J. Comp. Phys. 2012, 231, 2811.
- 18 I. Carmesin, K. Kremer, Macromolecules 1988, 21, 2819.
- 19 W. Paul, K. Binder, D. W. Heermann, K. Kremer, J. Phys. II 1990, 1, 37.
- 20 M. Lang, W. Michalke, S. Kreitmeier, J. Comp. Phys. 2003, 185, 549.
- 21 M. Lang, Macromolecules 2013, 46, 1158.
- 22 S. J. Clarson, J. E. Mark, J. A. Semlyen, Polym. Commun. 1986, 27, 244.
- 23 T. J. Fyvie, H. L. Frisch, J. A. Semlyen, S. J. Clarson, J. E. Mark, J. Polym. Sci. A 1987, 25, 2503.
- 24 L. Liu, P. Li, S. A. Asher, Nature 1998, 397, 141.
- 25 H. L. Frisch, E. Wassermann, J. Am. Chem. Soc. 1961, 83, 3789.
- 26 F. Ferrari, H. Kleinert, I. Lazzizzera, Phys. Lett. A 2000, 276, 31.
- 27 F. Ferrari, H. Kleinert, I. Lazzizzera, Eur. Phys. J. B 2000, 18, 645.
- 28 M. Otto, J. Phys. A 2001, 34, 2539.
- 29 P. J. Flory, J. Rehner, Jr., J. Chem. Phys. 1943, 11, 521.
- 30 M. Rubinstein, R. Colby, Polymer Physics, Oxford University Press, Oxford, UK 2003.
- 31 M. Rubinstein, S. Panyukov, Macromolecules 1997, 30, 8036.
- 32 M. Rubinstein, S. Panyukov, Macromolecules 2002, 35, 6670.
- 33 M. Lang, A. John, J.-U. Sommer, in preparation.
- 34 J. Bastide, C. Picot, S. Candau, J. Macromol. Sci. Phys. 1981, B19, 13.
- 35 J. P. Cohen-Addad, M. Domard, J. Herz, J. Chem. Phys. 1982, 76, 2744.
- 36 J. P. Cohen-Addad, M. Domard, G. Lorentz, J. Herz, J. Physique 1984, 45, 575.
- 37 W. Chasse, S. Schlögl, G. Riess, K. Saalwächter, Soft Matter 2013, 9, 6943.
- 38 M. Lang, W. Michalke, S. Kreitmeier, Macromol. Theo. Simul. 2001, 10, 204.
- 39 M. Lang, W. Michalke, S. Kreitmeier, J. Chem. Phys. 2001, 114, 7627.
- 40 M. Lang, S. Kreitmeier, D. Göritz, Rubber Chem. Tech. 2008, 80, 873.
- 41 J.-U. Sommer, S. Lay, Macromolecules 2002, 35, 9832.
- 42 S. M. Gumbell, L. Mullins, R. S. Rivlin, Trans. Faraday Soc. 1953, 49, 1495.
- 43 G. Allen, M. J. Kirkham, J. Padget, C. Price, Trans. Faraday Soc. 1970, 66, 1278.
- 44 P. C. Painter, S. L. Shenoy, J. Chem. Phys. 1993, 99, 1409.
- 45 M. Gottlieb, R. J. Gaylord, Macromolecules 1984, 17, 2024.
- 46 P. Pekarski, Y. Rabin, M. Gottlieb, J. Phys. II 1994, 4, 1677.
- 47 B. Xu, X. Di, G. B. McKenna, Macromolecules 2012, 45, 2402.
- 48 J.-U. Sommer, T. A. Vilgis, G. Heinrich, J. Chem. Phys. 1994, 100, 9181.
- 49 J.-U. Sommer, T. Russ, R. Brenn, M. Geoghegan, Europhys. Lett. 2002, 57, 32.