Exploiting Seeded RAFT Polymerization for the Preparation of Graft Copolymer Nanoparticles
Xuesheng Tan
Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Li Zhang
Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jianbo Tan
Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXuesheng Tan
Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Li Zhang
Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jianbo Tan
Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Although seeded reversible addition-fragmentation chain transfer (RAFT) polymerization is explored as a unique method for the preparation of block copolymer nanoparticles with diverse structures, the preparation of nonlinear polymer nanoparticles by seeded RAFT polymerization is rarely reported. Herein, linear block copolymer nanoparticles are first prepared by RAFT dispersion copolymerization of benzyl methacrylate (BzMA) and 2-(2-(n-butyltrithiocarbonate)propionate)ethyl methacrylate (BTPEMA) with different [BzMA]/[BTPEMA] ratios, and employed as seeds for seeded RAFT polymerization of isobornyl acrylate (IBOA) to prepare graft copolymer nanoparticles with different numbers of PIBOA side chains. Comparing with linear triblock copolymers with the same chemical composition, the graft copolymers can promote the formation of higher-order morphologies (e.g., vesicles) under seeded RAFT polymerization conditions. Effects of reaction parameters on the morphology of graft copolymer nanoparticles are investigated in detail, and two morphological phase diagrams are constructed. It is expected that this study will not only expand the scope of seeded RAFT polymerization but also offer new opportunities for the preparation of unique polymer nanoparticles.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
marc202400706-sup-0001-SuppMat.docx1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. B. Zetterlund, Y. Kagawa, M. Okubo, Chem. Rev. 2008, 108, 3747.
- 2P. B. Zetterlund, S. C. Thickett, S. Perrier, E. Bourgeat-Lami, M. Lansalot, Chem. Rev. 2015, 115, 9745.
- 3G. K. K. Clothier, T. R. Guimarães, S. W. Thompson, J. Y. Rho, S. Perrier, G. Moad, P. B. Zetterlund, Chem. Soc. Rev. 2023, 52, 3438.
- 4F. Jasinski, P. B. Zetterlund, A. M. Braun, A. Chemtob, Prog. Polym. Sci. 2018, 84, 47.
- 5D. Liu, J. He, L. Zhang, J. Tan, ACS Macro Lett. 2019, 8, 1660.
- 6D. Lin, L. Zhang, J. Tan, Acta Polym. Sin. 2023, 54, 761.
- 7Y. Wang, S. Dadashi-Silab, K. Matyjaszewski, ACS Macro Lett. 2018, 7, 720.
- 8Y. Wang, L. Fu, K. Matyjaszewski, ACS Macro Lett. 2018, 7, 1317.
- 9J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes, B. Charleux, Prog. Polym. Sci. 2013, 38, 63.
- 10N. Corrigan, K. Jung, G. Moad, C. J. Hawker, K. Matyjaszewski, C. Boyer, Prog. Polym. Sci. 2020, 111, 101311.
- 11R. A. Olson, M. E. Lott, J. B. Garrison, C. L. G. I. Davidson, L. Trachsel, D. I. Pedro, W. G. Sawyer, B. S. Sumerlin, Macromolecules 2022, 55, 8451.
- 12R. A. E. Richardson, T. R. Guimarães, M. Khan, G. Moad, P. B. Zetterlund, S. Perrier, Macromolecules 2020, 53, 7672.
- 13W.-M. Wan, C.-Y. Hong, C.-Y. Pan, Chem. Commun. 2009, 5883.
- 14C. Liu, C.-Y. Hong, C.-Y. Pan, Polym. Chem. 2020, 11, 3673.
- 15S. L. Canning, G. N. Smith, S. P. Armes, Macromolecules 2016, 49, 1985.
- 16N. J. W. Penfold, J. Yeow, C. Boyer, S. P. Armes, ACS Macro Lett. 2019, 8, 1029.
- 17X. Wang, L. Shen, Z. An, Prog. Polym. Sci. 2018, 83, 1.
- 18F. Lv, Z. An, P. Wu, Nat. Commun. 2019, 10, 1397.
- 19Y. Zhang, G. Han, M. Cao, T. Guo, W. Zhang, Macromolecules 2018, 51, 4397.
- 20Z. Ding, M. Ding, C. Gao, C. Boyer, W. Zhang, Macromolecules 2017, 50, 7593.
- 21J. Yeow, C. Boyer, Adv. Sci. 2017, 4, 1700137.
- 22J. Yeow, J. Xu, C. Boyer, ACS Macro Lett. 2015, 4, 984.
- 23Y. Ding, M. Cai, Z. Cui, L. Huang, L. Wang, X. Lu, Y. Cai, Angew. Chem., Int. Ed. 2018, 57, 1053.
- 24Q. Zhao, Q. Liu, C. Li, L. Cao, L. Ma, X. Wang, Y. Cai, Chem. Commun. 2020, 56, 4954.
- 25L. D. Blackman, S. Varlas, M. C. Arno, Z. H. Houston, N. L. Fletcher, K. J. Thurecht, M. Hasan, M. I. Gibson, R. K. O'Reilly, ACS Cent. Sci. 2018, 4, 718.
- 26S. Varlas, L. D. Blackman, H. E. Findlay, E. Reading, P. J. Booth, M. I. Gibson, R. K. O'Reilly, Macromolecules 2018, 51, 6190.
- 27F. D'Agosto, J. Rieger, M. Lansalot, Angew. Chem., Int. Ed. 2020, 59, 8368.
- 28C. Bergerbit, F. Baffie, A. Wolpers, P.-Y. Dugas, O. Boyron, M. Taam, M. Lansalot, V. Monteil, F. D'Agosto, Angew. Chem. 2020, 132, 10471.
10.1002/ange.202001741 Google Scholar
- 29J. Lesage de la Haye, X. Zhang, I. Chaduc, F. Brunel, M. Lansalot, F. D'Agosto, Angew. Chem., Int. Ed. 2016, 55, 3739.
- 30J. I. Bowman, C. B. Eades, M. A. Vratsanos, N. C. Gianneschi, B. S. Sumerlin, Angew. Chem., Int. Ed. 2023, 62, e202309951.
- 31J. Y. Rho, G. M. Scheutz, S. Häkkinen, J. B. Garrison, Q. Song, J. Yang, R. Richardson, S. Perrier, B. S. Sumerlin, Polym. Chem. 2021, 12, 3947.
- 32M. A. Touve, C. A. Figg, D. B. Wright, C. Park, J. Cantlon, B. S. Sumerlin, N. C. Gianneschi, ACS Cent. Sci. 2018, 4, 543.
- 33Y. Li, Y. Li, R. Yan, L. Zhang, H. Liu, J. Tan, Macromolecules 2024, 57, 5175.
- 34J. Cao, Y. Li, Y. Tan, L. Zhang, J. Tan, Polym. Chem. 2024, 15, 106.
- 35R. Wang, W. Zhu, L. Zhang, X. Sheng, J. Tan, Chin. J. Chem. 2024, 42, 1606.
- 36B. Niu, H. Huang, L. Zhang, J. Tan, ACS Macro Lett. 2024, 13, 577.
- 37S. Zhao, L. Zhang, J. Tan, Chin. J. Chem. 2023, 41, 1517.
- 38J. He, Y. Chen, L. Zhang, J. Tan, Chin. Chem. Lett. 2023, 34, 107344.
- 39S. Perrier, Macromolecules 2017, 50, 7433.
- 40M. R. Hill, R. N. Carmean, B. S. Sumerlin, Macromolecules 2015, 48, 5459.
- 41J. Chiefari, Y. K. (Bill) Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 1998, 31, 5559.
- 42Y. Chen, J. Tan, L. Shen, Macromol. Rapid Commun. 2023, 44, 2300334.
- 43Y. Qu, F. Huo, Q. Li, X. He, S. Li, W. Zhang, Polym. Chem. 2014, 5, 5569.
- 44S. Chen, P. Shi, W. Zhang, Chin. J. Polym. Sci. 2017, 35, 455.
- 45J. Huang, Y. Guo, S. Gu, G. Han, W. Duan, C. Gao, W. Zhang, Polym. Chem. 2019, 10, 3426.
- 46S. Li, H. Nie, S. Gu, Z. Han, G. Han, W. Zhang, ACS Macro Lett. 2019, 8, 783.
- 47L. Zhang, Q. Lu, X. Lv, L. Shen, B. Zhang, Z. An, Macromolecules 2017, 50, 2165.
- 48C. J. Mable, N. J. Warren, K. L. Thompson, O. O. Mykhaylyk, S. P. Armes, Chem. Sci. 2015, 6, 6179.
- 49S. Varlas, T. J. Neal, S. P. Armes, Chem. Sci. 2022, 13, 7295.
- 50C. E. Boott, J. Gwyther, R. L. Harniman, D. W. Hayward, I. Manners, Nat. Chem. 2017, 9, 785.
- 51A. M. Oliver, J. Gwyther, C. E. Boott, S. Davis, S. Pearce, I. Manners, J. Am. Chem. Soc. 2018, 140, 18104.
- 52M. Huo, M. Zeng, D. Li, L. Liu, Y. Wei, J. Yuan, Macromolecules 2017, 50, 8212.
- 53M. Huo, Y. Zhang, M. Zeng, L. Liu, Y. Wei, J. Yuan, Macromolecules 2017, 50, 8192.
- 54C. J. Mable, L. A. Fielding, M. J. Derry, O. O. Mykhaylyk, P. Chambon, S. P. Armes, Chem. Sci. 2018, 9, 1454.
- 55F. Huo, S. Li, Q. Li, Y. Qu, W. Zhang, Macromolecules 2014, 47, 2340.
- 56P. Shi, Y. Qu, C. Liu, H. Khan, P. Sun, W. Zhang, ACS Macro Lett. 2016, 5, 88.
- 57P. Chambon, A. Blanazs, G. Battaglia, S. P. Armes, Macromolecules 2012, 45, 5081.
- 58X. Dai, Y. Zhang, L. Yu, X. Li, L. Zhang, J. Tan, ACS Macro Lett. 2019, 8, 955.
- 59W. Hou, J. Wu, Z. Li, Z. Zhang, Y. Shi, Y. Chen, Macromolecules 2023, 56, 824.
- 60W. Cai, S. Yang, L. Zhang, Y. Chen, L. Zhang, J. Tan, Macromolecules 2022, 55, 5775.
- 61R. Zeng, Y. Chen, L. Zhang, J. Tan, Macromolecules 2020, 53, 1557.
- 62D. Ikkene, A. A. Arteni, M. Ouldali, G. Francius, A. Brûlet, J.-L. Six, K. Ferji, Biomacromolecules 2021, 22, 3128.
- 63G. Xie, J. Wu, L. Zhang, J. Tan, Langmuir 2024, 40, 17098.
- 64C. Gao, J. Wu, H. Zhou, Y. Qu, B. Li, W. Zhang, Macromolecules 2016, 49, 4490.
- 65X. Wang, C. A. Figg, X. Lv, Y. Yang, B. S. Sumerlin, Z. An, ACS Macro Lett. 2017, 6, 337.
- 66W. Lin, S. Jia, Y. Li, L. Zhang, H. Liu, J. Tan, ACS Macro Lett. 2024, 13, 1022.
- 67J. Xu, S. Shanmugam, C. Fu, K.-F. Aguey-Zinsou, C. Boyer, J. Am. Chem. Soc. 2016, 138, 3094.
- 68S. Shanmugam, J. Cuthbert, T. Kowalewski, C. Boyer, K. Matyjaszewski, Macromolecules 2018, 51, 7776.
- 69J. Tanaka, S. Häkkinen, P. T. Boeck, Y. Cong, S. Perrier, S. S. Sheiko, W. You, Angew. Chem., Int. Ed. 2020, 59, 7203.
- 70S. Han, J. Wu, Y. Zhang, J. Lai, Y. Chen, L. Zhang, J. Tan, Macromolecules 2021, 54, 4669.
- 71S. Yang, L. Zhang, Y. Chen, J. Tan, Macromolecules 2022, 55, 8472.
- 72J. Tan, C. Huang, D. Liu, X. Zhang, Y. Bai, L. Zhang, ACS Macro Lett. 2016, 5, 894.
- 73D. Liu, S. Yang, S. Peng, Y. Chen, L. Zhang, J. Tan, Macromol. Rapid Commun. 2022, 43, 2100921.
- 74K. Chen, X. Hu, N. Zhu, K. Guo, Macromol. Rapid Commun. 2020, 41, 2000357.
- 75A. Blanazs, A. J. Ryan, S. P. Armes, Macromolecules 2012, 45, 5099.
- 76N. J. Warren, O. O. Mykhaylyk, D. Mahmood, A. J. Ryan, S. P. Armes, J. Am. Chem. Soc. 2014, 136, 1023.
- 77X. Luo, S. Zhao, Y. Chen, L. Zhang, J. Tan, Macromolecules 2021, 54, 2948.
- 78A. Blanazs, J. Madsen, G. Battaglia, A. J. Ryan, S. P. Armes, J. Am. Chem. Soc. 2011, 133, 16581.
- 79L. P. D. Ratcliffe, B. E. McKenzie, G. M. D. Le Bouëdec, C. N. Williams, S. L. Brown, S. P. Armes, Macromolecules 2015, 48, 8594.
- 80B. Niu, L. Zhang, J. Tan, Macromolecules 2024, 57, 9766.