Melt Compounding of Poly(lactic acid)-Based Composites: Blending Strategies, Process Conditions, and Mechanical Properties
Yiwen Tao
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorYue Zhang
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Tao Xia
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Email: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ning Lin
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Email: [email protected]; [email protected]
Search for more papers by this authorYiwen Tao
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorYue Zhang
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Search for more papers by this authorCorresponding Author
Tao Xia
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Email: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ning Lin
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 P. R. China
Email: [email protected]; [email protected]
Search for more papers by this authorAbstract
Polylactic acid (PLA), derived from renewable resources, has the advantages of rigidity, thermoplasticity, biocompatibility, and biodegradability, and is widely used in many fields such as packaging, agriculture, and biomedicine. The excellent processability properties allow for melt processing treatments such as extrusion, injection molding, blow molding, and thermoforming in the preparation of PLA-based materials. However, the low toughness and poor thermal stability of PLA limit its practical applications. Compared with pure PLA, conditions such as processing technology, filler, and crystallinity affect the mechanical properties of PLA-based materials, including tensile strength, Young's modulus, and elongation at break. This review systematically summarizes various technical parameters for melt processing of PLA-based materials and further discusses the mechanical properties of PLA homopolymers, filler-reinforced PLA-based composites, PLA-based multiphase composites, and reactive composite strategies for PLA-based composites.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1E. Castro-Aguirre, F. Iguez-Franco, H. Samsudin, X. Fang, R. Auras, Adv. Drug Delivery Rev. 2016, 107, 333.
- 2J. Yu, S. Xu, B. Liu, H. Wang, F. Qiao, X. Ren, Q. Wei, Eur. Polym. J. 2023, 193, 112076.
- 3C. Sun, S. Wei, H. Tan, Y. Huang, Y. Zhang, Chem. Eng. J. 2022, 446, 136881.
- 4X. Zhao, J. Yu, X. Liang, Z. Huang, J. Li, S. Peng, Int. J. Biol. Macromol. 2023, 233, 123581.
- 5N. Tripathi, M. Misra, A K. Mohanty, ACS Eng. Au 2021, 1, 7.
- 6V. Nagarajan, K. A. Mohanty, M. Misra, ACS Sustainable Chem. Eng. 2016, 4, 2899.
- 7X. Zhao, J. Liu, J. Li, X. liang, W. Zhou, S. Peng, Int. J. Biol. Macromol. 2022, 218, 115.
- 8N. A. Rosli, M. Karamanlioglu, H. Kargarzadeh, I. Ahamd, Int. J. Biol. Macromol. 2021, 187, 732.
- 9M. Kervran, C. Vagner, M. Cochez, M. Poncot, M. R. Saeb, H. Vahabi, Polym. Degrad. Stab. 2022, 201, 109995.
- 10M. W. Myburgh, L. Favaro, W. H. van Zyl, M. Viljoen-Bloom, Bioresource technol. 2023, 378, 129008.
- 11J. Jayaramudu, K. Das, M. Sonakshi, G. Siva Mohan Reddy, B. Aderibigbe, R. Sadiku, S. S. Ray, Int. J. Biol. Macromol. 2014, 64, 428.
- 12G. Li, M. Zhao, F. Xu, B. Yang, X. Li, X. Meng, L. Teng, F. Sun, Y. Li, Molecules 2020, 25, 5023.
- 13J. Ahmed, S. K. Varshney, F. Janvier, J. Therm. Anal. Calorim. 2013, 115, 2053.
10.1007/s10973-013-3234-9 Google Scholar
- 14M. L. Di Lorenzo, R. Androsch, Industrial Applications of Poly (Lactic Acid), Springer, Berlin 2018.
10.1007/978-3-319-75459-8 Google Scholar
- 15R. Siakeng, M. Jawaid, H. Ariffin, S. Sapuan, M. Asim, N. Saba, Polym. Compos. 2019, 40, 446.
- 16S. Farah, D. G. Anderson, R. Langer, Adv. Drug Delivery Rev. 2016, 107, 367.
- 17S.-B. Park, E. Lih, K.-S. Park, Y. K. Joung, D. K. Han, Prog. Polym. Sci. 2017, 68, 77.
- 18M. Singhvi, D. Gokhale, RSC Adv. 2013, 3, 13558.
- 19N.-A. A. B. Taib, M. R. Rahman, D. Huda, K. K. Kuok, S. Hamdan, M. K. B. Bakri, M. R. M. B. Julaihi, A. Khan, Polym. Bull. 2022, 80, 1179.
- 20T. Qiang, D. Yu, Y. Wang, H. Gao, Polym-Plast. Technol. 2013, 52, 149.
- 21J. Bhattacharjee, A. Sarkar, T. K. Panda, Curr. Opin. Green. Sust. 2021, 31, 100545.
- 22I. Armentano, N. Bitinis, E. Fortunati, S. Mattioli, N. Rescignano, R. Verdejo, M. A. Lopez-Manchado, J. M. Kenny, Prog. Polym. Sci. 2013, 38, 1720.
- 23R. Ata, A. Aladdin, N. Z. Othman, R. A. Malek, H. E. Enshasy, J. Chem. Pharm. Res. 2015, 2015, 51.
- 24B. Tyler, D. Gullotti, A. Mangraviti, T. Utsuki, H. Brem, Adv. Drug Delivery Rev. 2016, 107, 163.
- 25L. T. Lim, R. Auras, M. Rubino, Prog. Polym. Sci. 2008, 33, 820.
- 26L. C. Arruda, M. Magaton, R. E. S. Bretas, M. M. Ueki, Polym. Test. 2015, 43, 27.
- 27J. W. Jung, S. H. Kim, S. H. Kim, J. K. Park, W. I. Lee, Compos. Res. 2011, 24, 1.
- 28R. Pantani, F. De Santis, A. Sorrentino, F. De Maio, G. Titomanlio, Polym. Degrad. Stabil. 2010, 95, 1148.
- 29C. Harper, Modern Plastics Handbook, Mcgraw. Hill, New York 2000.
- 30E. M. Mount, Extrusion Processes. in Applied Plastics Engineering Handbook, William Andrew Publishing, Norwich, NY 2017.
- 31J. S. Dugan, Intl. Nonwovens J. 2001, 10.
- 32M. Jamshidian, E. A. Tehrany, M. Imran, M. Jacquot, S. Desobry, Compr. Rev. Food Sci. Food Saf. 2010, 9, 552.
- 33G. Rajeshkumar, S. A. Seshadri, G. Devnani, M. Sanjay, S. Siengchin, J. P. Maran, N. A. Al-Dhabi, P. Karuppiah, V. A. Mariadhas, N. Sivarajasekar, J. Clean. Prod. 2021, 310, 127483.
- 34A. Gholampour, T. Ozbakkaloglu, J. Mater. Sci. 2020, 55, 829.
- 35M. Jamshidian, E. A. Tehrany, M. Imran, M. Jacquot, S. Desobry, Compr. Rev. Food Sci. F. 2010, 9, 552.
- 36 NatureWorks, Ingeo™ Biopolymer 2500HP Technical Data Sheet.
- 37B. Pratap, R. K. Gupta, A. Yadav, M. Nag, AIP. Conf. Proc. 2020, 2273, 050053.
- 38T. Ageyeva, J. G. Kovács, T. Tábi, J. Therm. Anal. Calorim. 2022, 147, 8199.
- 39 NatureWorks, I. ™. Biopolymer 3001D Technical Data Sheet.
- 40B. Hugener, Master Degree, Massey University, (Palmerston North, New Zealand) 2010.
- 41 NatureWorks, I. ™. Biopolymer 7001D Technical Data Sheet.
- 42X. Jin, X. Chen, Q. Cheng, N. Zhang, S. Cai, J. Ren, RSC Adv. 2017, 7, 46014.
- 43Y.-J. Chen, A. Huang, T. Ellingham, C. Chung, L.-S. Turng, Eur. Polym. J. 2018, 98, 262.
- 44C.-F. Yang, Y.-F. Huang, J. Ruan, A.-C Su, Macromolecules 2012, 45, 872.
- 45M. Daisuke, F. Yoko, T. Kiyotsuna, I. Midori, N. Bunso, Y. Hideki, Fibers 2008, 64, 212.
10.2115/fiber.64.212 Google Scholar
- 46Y. Srithep, D. Pholharn, L.-S. Turng, O. Veang-in, Polym. Degrad. Stabil. 2015, 120, 290.
- 47A. Sdergrd, M. Stolt, Prog. Polym. Sci. 2002, 27, 1123.
10.1016/S0079-6700(02)00012-6 Google Scholar
- 48S. C. Schmidt, M. A. Hillmyer, J. Polym. Sci. Pol. Phys. 2015, 39, 300.
- 49H. Simmons, P. Tiwary, J. E. Colwell, M. Kontopoulou, Polym. Degrad. Stabil. 2019, 166, 248.
- 50V. Nagarajan, A. K. Mohanty, M. Misra, J. Appl. Polym. Sci. 2016, 133, 43673.
- 51A. M. Harris, E. C. Lee, J. Appl. Polym. Sci. 2007, 107, 2246.
- 52S. Modi, K. Koelling, Y. Vodovotz, Eur. Polym. J. 2013, 49, 3681.
- 53Y. Hong, L. Chen, G. Song, D. Bassir, S. Cheng, X. Shi, H. Liu, G. Tang, Polym. Compos. 2018, 39, E1618.
- 54S. Modi, K. Koelling, Y. Vodovotz, J. Appl. Polym. Sci. 2011, 124, 3074.
10.1002/app.35343 Google Scholar
- 55K. Sirisinha, W. Somboon, J. Appl. Polym. Sci. 2011, 124, 4986.
- 56S. Farah, D. G. Anderson, R. Langer, Adv. Drug. Deliv. Rev. 2016, 107, 367.
- 57B. Gupta, N. Revagade, J. Hilborn, Prog. Polym. Sci. 2007, 32, 455.
- 58J. M. Ferri, O. Fenollar, A. Jorda-Vilaplana, D. García-Sanoguera, R. Balart, Polym. Int. 2016, 65, 453.
- 59J. C. Lee, M.-C. Choi, D.-H. Choi, C.-S. Ha, Polym. Degrad. Stabil. 2019, 160, 195.
- 60M. M. Reddy, S. Vivekanandhan, M. Misra, S. K. Bhatia, A. K. Mohanty, Prog. Polym. Sci. 2013, 38, 1653.
- 61H. Li, M. A. Huneault, Polymer 2007, 48, 6855.
- 62L. Yu, K. Dean, L. Li, Prog. Polym. Sci. 2006, 31, 576.
- 63K. I. Ku Marsilla, C. J. R. Verbeek, Eur. Polym. J. 2015, 67, 213.
- 64T. Tábi, T. Ageyeva, J. G. Kovács, Polym. Test. 2021, 101, 107282.
- 65C. Nyambo, A. K. Mohanty, M. Misra, Biomacromolecules 2010, 11, 1654.
- 66S. Yang, S. Bai, W. Duan, Q. Wang, ACS Sustainable Chem. Eng. 2018, 6, 4282.
- 67S. Yang, S. Bai, Q. Wang, Compos. Sci. Technol. 2018, 158, 34.
- 68S. Bandi, D. A. Schiraldi, Macromolecules 2006, 39, 6537.
- 69A. R. M. Costa, C. B. B. Luna, E. P. do Nascimento, E. Ferreira, C. M. Costa, Y. M. B. de Almeida, E. M. Araujo, Polymers-Basel 2023, 15, 3434.
- 70R. Vadori, M. Misra, A. K. Mohanty, J. Appl. Polym. Sci. 2017, 134, 44516.
- 71X. Guo, J. Zhang, J. Huang, Polymer 2015, 69, 103.
- 72A. Visco, D. Nocita, A. Giamporcaro, S. Ronca, G. Forte, A. Pistone, C. Espro, J. Mech. Behav. Biomed. 2017, 68, 308.
- 73L. He, F. Song, D.-F. Li, X. Zhao, X.-L. Wang, Y.-Z. Wang, ACS Sustainable Chem. Eng. 2020, 8, 1573.
- 74S. M. Lai, S. H. Wu, G. G. Lin, T. M. Don, Eur. Polym. J. 2014, 52, 193.
- 75P. I. C. Claro, A. R. S. Neto, A. C. C. Bibbo, L. H. C. Mattoso, M. S. R. Bastos, J. M. Marconcini, J. Polym. Environ. 2016, 24, 363.
- 76B. Chihaoui, Q. Tarrés, M. Delgado-Aguilar, P. Mutjé, S. Boufi, Ind. Crops Prod. 2022, 175, 114287.
- 77S. M. Bhasney, P. Bhagabati, A. Kumar, V. Katiyar, Compos. Sci. Technol. 2019, 171, 54.
- 78G. Urtekin, A. Aytac, J. Polym. Res. 2021, 28, 180.
- 79Z. Li, K. Li, H. He, Y. Zhou, Z. He, Iran. Polym. J. 2019, 28, 371.
- 80H.-Y. Cheung, K.-T. Lau, X.-M. Tao, D. Hui, Composites, Part B 2008, 39, 1026.
- 81S. M Bhasney, K. Mondal, A. Kumar, V. Katiyar, Compos. Sci. Technol. 2020, 187, 107941.
- 82N. Bitinis, R. Verdejo, P. Cassagnau, M. A. López-Manchado, Mater. Chem. Phys. 2011, 129, 823.
- 83M. Bijarimi, S. Ahmad, R. Rasid, Int. Conf. Agr. Chem. Environ. Sci. 2012, 19, 115.
- 84L. Jiang, J. Zhang, M. P. Wolcott, Polymer 2007, 48, 7632.
- 85S. Yilmaz, M. Koda, T. Yilmaz, T. Ozkoc, Composites, Part B 2014, 56, 527.
- 86Y. Chen, L. Luo, G. Zen, W. Liu, J. Compos. Mater. 2016, 33, 61.
- 87D. L. Ortiz-Barajas, J. A. Arévalo-Prada, O. Fenollar, Y. J. Rueda-Ordóñez, S. Torres-Giner, Appl. Sci. 2020, 10, 6468.
- 88I. Spiridon, R. D. Nita, M. Kozlowski, A. Nechita, R. G. Ursu, Cellul. Chem. Technol. 2016, 50, 5.
- 89T. Bai, B. Zhu, H. Liu, Y. Wang, G. Song, C. Liu, C. Shen, Int. J. Biol. Macromol. 2020, 151, 628.
- 90A. Boonmahitthisud, A. Mongkolvai, S. Chuayjuljit, J. Polym. Environ. 2021, 29, 2530.
- 91B. Ghassemi, S. Estaji, S. R. Mousavi, S. Nemati Mahand, S. Shojaei, M. Mostafaiyan, M. Arjmand, H. A. Khonakdar, J. Mater. Sci. 2022, 57, 7250.
- 92M. Murariu, A. Doumbia, L. Bonnaud, A-F. Dechief, Y. Paint, M. Ferreira, C. Campagne, E. Devaux, P. Dubois, Biomacromolecules 2011, 12, 1762.
- 93K.-C. Cheng, Y.-H. Lin, W. Guo, T.-H. Chuang, S.-C. Chang, S.-F. Wang, T.-M. Don, J. Mater. Sci. 2014, 50, 1605.
- 94L. Aliotta, P. Cinelli, M. B. Coltelli, A. Lazzeri, Eur. Polym. J. 2019, 113, 78.
- 95H. Gui, P. Xu, Y. Hu, J. Wang, X. Yang, A. Bahader, Y. Ding, RSC Adv. 2015, 5, 27814.
- 96R. Siakeng, M. Jawaid, H. Ariffin, S. M. Sapuan, M. Asim, N. Saba, Polym. Compos. 2018, 40, 446.
- 97A. Rostami, H. Nazockdast, M. Karimi, RSC Adv. 2016, 6, 49747.
- 98M. Nofar, R. Salehiyan, S. S. Ray, Composites, Part B 2021, 215, 108845.
- 99B. Liu, L. Jiang, H. Liu, J. Zhang, Ind. Eng. Chem. Res. 2010, 49, 6399.
- 100P. F. Finotti, L. C. Costa, T. S. Capote, R. M. Scarel-Caminaga, M. A. Chinelatto, J. Mech. Behav. Biomed. Mater. 2017, 68, 155.
- 101X. Zhao, D. Zhang, S. Yu, H. Zhou, S. Peng, E-Polymers 2021, 21, 793.
- 102K. Zhang, V. Nagarajan, M. Misra, A K. Mohanty, ACS Appl. Mater. Interfaces 2014, 6, 12436.
- 103F. Carrasco, P. Pagès, J. Gámez-Pérez, O. O. Santana, M. L. Maspoch, Polym. Degrad. Stabil. 2010, 95, 116.
- 104V. Nagarajan, A. K. Mohanty, M. Misra, Polym. Eng. Sci. 2018, 58, 280.
- 105T. Mukherjee, M. Sani, N. Kao, R. K. Gupta, N. Quazi, S. Bhattacharya, Chem. Eng. Sci. 2013, 101, 655.
- 106P. Dhar, D. Tarafder, A. Kumar, V. Katiyar, Polymer 2016, 87, 268.
- 107X. Lu, X. Wei, J. Huang, L. Yang, G. Zhang, G. He, M. Wang, J. Qu, Ind. Eng. Chem. Res. 2014, 53, 17386.
- 108K.-M. Choi, M.-C. Choi, D.-H. Han, T.-S. Park, C.-S. Ha, Eur. Polym. J. 2013, 49, 2356.
- 109M. Mihai, M. A. Huneault, B. D. Favis, Polym. Eng. Sci. 2010, 50, 629.
- 110S. Pilla, S. G. Kim, G. K. Auer, S. Gong, C. B. Park, Polym. Eng. Sci. 2009, 49, 1653.
- 111Z. F. Zhou, G. Q. Huang, W. B. Xu, F. M. Ren, eXPRESS Polym. Lett. 2007, 1, 734.
- 112A. Bhattacharya, J. W. Rawlins, P. Ray, Polymer Grafting and Crosslinking, Wiley, 2008.
- 113N. Lin, J. Huang, P. R. Chang, J. Feng, J. Yu, Carbohydr. Polym. 2011, 83, 1834.
- 114K. B. Azouz, E. C. Ramires, W. Van den Fonteyne, N. El Kissi, A. Dufresne, ACS Macro. Lett. 2012, 1, 236.
- 115H. Liu, J. Zhang, J. Polym. Sci. Pol. Phys. 2011, 49, 1051.
- 116S. W. Hwang, S. B. Lee, C. K. Lee, J. Y. Lee, J. K. Shim, S. E. M. Selke, H. Soto-Valdez, L. Matuana, M. Rubino, R. Auras, Polym. Test. 2012, 31, 333.