Shape Memory Polyurethane Composite With Fast Response to Near-Infrared Light Based on Tannic Acid–Iron and Dynamic Phenol-Carbamate Network
Yong Yong
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorYang Liu
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorZetian Zhang
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorSongbo Dai
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorXiaohan Yang
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorFufen Li
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Zhengjun Li
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorYong Yong
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorYang Liu
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorZetian Zhang
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorSongbo Dai
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorXiaohan Yang
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorFufen Li
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorCorresponding Author
Zhengjun Li
College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065 China
Search for more papers by this authorAbstract
Intelligent materials derived from green and renewable bio-based materials garner widespread attention recently. Herein, shape memory polyurethane composite (PUTA/Fe) with fast response to near-infrared (NIR) light is successfully prepared by introducing Fe3+ into the tannic acid-based polyurethane (PUTA) matrix through coordination between Fe3+ and tannic acid. The results show that the excellent NIR light response ability is due to the even distribution of Fe3+ filler with good photo-thermal conversion ability. With the increase of Fe3+ content, the NIR light response shape recovery rate of PUTA/Fe composite films is significantly improved, and the shape recovery time is reduced from over 60 s to 40 s. In addition, the mechanical properties of PUTA/Fe composite film are also improved. Importantly, owing to the dynamic phenol–carbamate network within the polymer matrix, the PUTA/Fe composite film can reshape its permanent shape through topological rearrangement and show its good NIR light response shape memory performance. Therefore, PUTA/Fe composites with high content of bio-based material (TA content of 15.1–19.4%) demonstrate the shape memory characteristics of fast response to NIR light; so, it will have great potential in the application of new intelligent materials including efficient and environmentally friendly smart photothermal responder.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
marc202400105-sup-0001-SuppMat.docx246.4 KB | Supporting Information |
marc202400105-sup-0002-MovieS1.mp45.3 MB | Supplemental Movie 1 |
marc202400105-sup-0003-MovieS2.mp44.6 MB | Supplemental Movie 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Luo, F. Zhang, L. Wang, Y. Liu, J. Leng, Adv. Funct. Mater. 2023, 34, 2312036.
- 2A. Lendlein, O. E. C. Gould, Nat. Rev. Mater. 2019, 4, 116.
- 3B. Hu, H. Wang, X. Wang, R. Ren, Y. Huang, M. Zhai, W. Shao, Q. Zhang, Q.-Q. Ni, Eur. Polym. J. 2024, 202, 112602.
- 4Z. Liang, J. Li, K. Chen, Y. Dong, C. Yu, Q. Kan, Smart Mater. Struct. 2023, 32, 075018.
10.1088/1361-665X/acdd3a Google Scholar
- 5Z. Xu, C. Ding, D.-W. Wei, R.-Y. Bao, K. Ke, Z. Liu, M.-B. Yang, W. Yang, ACS Appl. Mater. Interfaces 2019, 11, 30332.
- 6G. Fan, S. Wang, J. Jiang, Z. Liu, Z. Liu, G. Li, Chem. Eng. J. 2022, 447, 137534.
- 7Q. Ze, X. Kuang, S. Wu, J. Wong, S. M. Montgomery, R. Zhang, J. M. Kovitz, F. Yang, H. J. Qi, R. Zhao, Adv. Mater. 2019, 32, 1906657.
- 8J. Delaey, P. Dubruel, S. Van Vlierberghe, Adv. Funct. Mater. 2020, 30, 1909047.
- 9S. Alipour, A. Pourjavadi, S. H. Hosseini, Carbohydr. Polym. 2023, 310, 120610.
- 10T. Gu, T. Ji, H. Bi, K. Ding, H. Sun, W. Zhai, Z. Ren, Y. Wei, M. Xu, Appl. Mater. Today 2023, 35, 102009.
10.1016/j.apmt.2023.102009 Google Scholar
- 11Y. Li, F. Zhang, Y. Liu, J. Leng, Small 2023, 2307244.
- 12W. Zhao, N. Li, L. Liu, J. Leng, Y. Liu, Appl. Phys. Rev. 2023, 10, 011306.
- 13W. Zheng, Y. Shi, L. Zhao, S. Jia, L. Li, C. L. Gan, D. Zhang, Q. Guo, Nat. Commun. 2023, 14, 7103.
- 14C. Strutynski, M. Evrard, F. Désévédavy, G. Gadret, J.-C. Jules, C.-H. Brachais, B. Kibler, F. Smektala, Nat. Commun. 2023, 14, 6561
- 15A. Biswas, V. K. Aswal, B. Ray, P. Maiti, J. Phys. Chem. C 2018, 122, 11167.
- 16M. Loeblein, A. Bolker, Z. L. Ngoh, L. Li, E. Wallach, S. H. Tsang, M. Pawlik, R. Verker, N. Atar, I. Gouzman, E. H. T. Teo, Carbon 2018, 139, 626.
- 17R. Liang, H. Yu, L. Wang, N. Wang, B. U. Amin, Adv. Funct. Mater. 2021, 31, 2102621.
- 18Y. Bai, J. Zhang, D. Wen, P. Gong, J. Liu, J. Ju, X. Chen, Compos. Sci. Technol. 2020, 187, 107940.
- 19X. Li, W. Liu, Y. Li, W. Lan, D. Zhao, H. Wu, Y. Feng, X. He, Z. Li, J. Li, F. Luo, H. Tan, J. Mater. Chem. B 2020, 8, 5117.
- 20S. Dai, S. Yue, Z. Ning, N. Jiang, Z. Gan, ACS Appl. Mater. Interfaces 2022, 14, 14668.
- 21X. Chen, Y. Liu, J. Li, T.-W. Wong, T. Chen, T. Zhang, L. Wang, Polym. Test. 2023, 122, 108026.
- 22W. Xie, F. Yan, E. Pakdel, J. Sharp, D. Liu, X. Wang, S. Zhan, L. Sun, ACS Biomater. Sci. Eng. 2020, 6, 5305.
- 23S.-t. Li, X.-z. Jin, Y.-w. Shao, X.-d. Qi, J.-h. Yang, Y. Wang, Eur. Polym. J. 2019, 116, 302.
- 24Y. Bai, J. Zhang, X. Chen, ACS Appl. Mater. Interfaces 2018, 10, 14017.
- 25L. Yang, R. Tong, Z. Wang, H. Xia, ChemPhysChem 2018, 19, 2052.
- 26Z. Ji, S. Qin, S. Ma, X. Jia, X. Wang, F. Zhou, Friction 2021, 10, 1180.
- 27T. Liao, Z. Chen, Y. Kuang, Z. Ren, W. Yu, W. Rao, L. Li, Y. Liu, Z. Xu, B. Jiang, C. Li, Acta Biomater. 2023, 159, 312.
- 28X. He, H. Zhu, J. Shang, M. Li, Y. Zhang, S. Zhou, G. Gong, Y. He, A. Blocki, J. Guo, Theranostics 2022, 12, 6258.
- 29J. Li, Y. Zhou, J. Liu, X. Yang, K. Zhang, L. Lei, H. Hu, H. Zhang, L. Ouyang, H. Gao, J. Controlled Release 2022, 352, 313.
- 30X.-L. Liu, H.-C. Wang, T. Yang, X.-Z. Yue, S.-S. Yi, Chem. Commun. 2023, 59, 13690.
- 31Z. Guo, W. Xie, J. Lu, X. Guo, J. Xu, W. Xu, Y. Chi, N. Takuya, H. Wu, L. Zhao, J. Mater. Chem. B 2021, 9, 4098.
- 32T. Liu, M. Zhang, W. Liu, X. Zeng, X. Song, X. Yang, X. Zhang, J. Feng, ACS Nano 2018, 12, 3917.
- 33X. Chen, L. Wang, S. Liu, X. Luo, K. Wang, Q. He, Cancer Nanotechnol. 2022, 13, 41.
- 34Y. Liu, Z. Zhang, K. Yang, D. Chen, Z. Li, Polymer 2022, 247, 124749.
- 35S. Li, J. Li, Y. Liao, S. Chen, Y. Zheng, M. Li, K. Sun, J. Energy Storage 2022, 54, 105337.
10.1016/j.est.2022.105337 Google Scholar
- 36T. Wang, J. Zhao, C. Weng, T. Wang, Y. Liu, Z. Han, Z. Zhang, Composites, Part A 2021, 144, 106322.
- 37R. Zhang, J. Tian, Y. Wu, W. Chou, J. Yang, P. Xue, Polym. Test. 2021, 99, 107217.
- 38Y. Liu, Z. Zhang, Z. Liang, Y. Yong, C. Yang, Z. Li, J. Mater. Chem. A 2022, 10, 16928.
- 39Y. Peng, Z. Zheng, P. Sun, X. Wang, T. Zhang, New J. Chem. 2013, 37, 729.
- 40S. S. Panda, B. P. Panda, S. Mohanty, S. K. Nayak, Green Process. Synth. 2017, 6, 341.
- 41X. Xue, M. Ricci, H. Qu, A. Lindstrom, D. Zhang, H. Wu, T.-Y. Lin, Y. Li, J. Controlled Release 2021, 329, 794.
- 42Z. Wu, X. Su, Z. Lin, N. I. Khan, G. Owens, Z. Chen, Sci. Total Environ. 2021, 764, 142883.
- 43J. Shi, W. Aftab, Z. Liang, K. Yuan, M. Maqbool, H. Jiang, F. Xiong, M. Qin, S. Gao, R. Zou, J. Mater. Chem. A 2020, 8, 20133.
- 44W.-w. Hu, X.-y. Shi, M.-h. Gao, C.-h. Huang, T. Huang, N. Zhang, J.-h. Yang, X.-d. Qi, Y. Wang, Compos. Commun. 2021, 28, 100980.
- 45X. Du, L. Jin, S. Deng, M. Zhou, Z. Du, X. Cheng, H. Wang, ACS Appl. Mater. Interfaces 2021, 13, 42991.
- 46X.-j. Gong, D.-a. Shi, Y.-k. Yang, T. Jiang, Y.-f. Meng, R. K. Y. Li, S.-c. Jiang, Chin. J. Polym. Sci. 2016, 34, 1039.
- 47Y. Liu, Z. Zhang, J. Wang, T. Xie, L. Sun, K. Yang, Z. Li, Polymer 2021, 228, 123860.
- 48Y. Liu, Z. Li, Z. Zhang, J. Wang, L. Sun, T. Xie, Prog. Org. Coat. 2021, 153, 106153.
- 49Y. Liu, Z. Zhang, W. Fan, K. Yang, Z. Li, J. Mater. Sci. 2022, 57, 5679.
- 50S. Sharma, B. Basu, ACS Appl. Polym. Mater. 2022, 4, 3752.
- 51J. Hu, R. Yang, L. Zhang, Y. Chen, X. Sheng, X. Zhang, Polymer 2021, 222, 123674.
- 52X. Zhang, L. Chen, C. Zhang, L. Liao, ACS Appl. Mater. Interfaces 2021, 13, 18175.
- 53P. Yan, W. Zhao, L. Jiang, B. Wu, K. Hu, Y. Yuan, J. Lei, J. Appl. Polym. Sci. 2017, 135, 45784.
10.1002/app.45784 Google Scholar
- 54P. Zhang, F. Cai, G.-J. Wang, H.-F. Yu, Chin. J. Polym. Sci. 2022, 40, 166.
- 55X. Wang, Y. He, J. Leng, Macromol. Mater. Eng. 2022, 307, 2100778.
- 56W. Du, Y. Jin, S. Lai, L. Shi, W. Fan, J. Pan, Polymer 2018, 158, 120.
- 57X. Wang, Y. He, J. Leng, ACS Appl Polym Mater 2023, 5, 1398.
- 58J. H. Park, B. K. Kim, Smart Mater. Struct. 2014, 23, 025038.
- 59H. Xie, J. Shao, Y. Ma, J. Wang, H. Huang, N. Yang, H. Wang, C. Ruan, Y. Luo, Q. Wang, X. Yu, Biomaterials 2018, 164, 11.
- 60L. Jiang, Y. Lei, Y. Xiao, X. Fu, W. Kong, Y. Wang, J. Lei, J. Mater. Chem. A 2020, 8, 22369.
- 61P. Zhang, M. Behl, X. Peng, M. Y. Razzaq, A. Lendlein, Macromol. Rapid Commun. 2016, 37, 1897.
- 62Z. Fang, N. Zheng, Q. Zhao, T. Xie, ACS Appl. Mater. Interfaces 2017, 9, 22077.
- 63W. Miao, W. Zou, B. Jin, C. Ni, N. Zheng, Q. Zhao, T. Xie, Nat. Commun. 2020, 11, 4257.
- 64Z. Xu, S. Meng, D.-W. Wei, R.-Y. Bao, Y. Wang, K. Ke, W. Yang, Nanoscale 2023, 15, 5458.
- 65L. Yang, H. Zhao, Y. Xie, P. Ouyang, Y. Ruan, J. Chen, W. Weng, X. He, H. Xia, Polym. Chem. 2022, 13, 1844.