Aliphatic Hyperbranched Polycarbonates Solid Polymer Electrolytes with High Li-Ion Transference Number for Lithium Metal Batteries
Chengliang Wang
Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042 China
Search for more papers by this authorXu Zhang
Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042 China
Search for more papers by this authorXiaofei Sun
Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042 China
Search for more papers by this authorYan Zhang
Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042 China
Search for more papers by this authorQingfu Wang
Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042 China
Search for more papers by this authorCorresponding Author
Jingjiang Sun
Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042 China
E-mail: [email protected]
Search for more papers by this authorChengliang Wang
Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042 China
Search for more papers by this authorXu Zhang
Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042 China
Search for more papers by this authorXiaofei Sun
Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042 China
Search for more papers by this authorYan Zhang
Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042 China
Search for more papers by this authorQingfu Wang
Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042 China
Search for more papers by this authorCorresponding Author
Jingjiang Sun
Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Address: Zhengzhou Rd. 53, Qingdao, CN-266042 China
E-mail: [email protected]
Search for more papers by this authorAbstract
In this work, hyperbranched polycarbonate-poly(ethylene oxide) (PEO)-based solid polymer electrolytes (HBPC-SEs) are successfully synthesized via a straightforward organo-catalyzed “A1”+“B2”-ring-opening polymerization approach. The temperature-dependent ionic conductivity of HBPC-SEs, composed of different polycarbonate linkages and various LiTFSI concentrations, is investigated. The results demonstrate that HBPC-SE with an ether-carbonate alternating structure exhibits superior ionic conductivity, attributed to the solubility of Li salts in the polymer matrix and the mobility of the polymer segments. The HBPC1-SE with 30 wt% LiTFSI presents the highest ionic conductivities of 2.15 × 10−5, 1.78 × 10−4, and 6.07 × 10−4 Scm−1 at 30, 60, and 80 °C, respectively. Compared to traditional PEO-based electrolytes, the incorporation of polycarbonate segments significantly enhances the electrochemical stability window (5 V) and Li+ transference number (0.53) of HBPC-SEs. Furthermore, the LiFePO4/HBPC1-SE-3/Li cell exhibits exceptional rate capability and long-cycling performance, maintaining a discharge capacity of 130 mAh g−1 at 0.5C with a capacity retention of 95% after 300 cycles.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information.
Supporting Information
Filename | Description |
---|---|
marc202300645-sup-0001-SuppMat.pdf879.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. M. Hao, S. Liang, C. D. Sewell, Z. Li, C. Zhu, J. Xu, Z. Lin, Nano Lett. 2021, 21, 7435.
- 2L. Zhang, S. Wang, Q. Wang, H. Shao, Z. Jin, Adv. Mater. 2023, 35, 2303355.
- 3Y. Liu, Q. Zeng, Z. Li, A. Chen, J. Guan, H. Wang, S. Wang, L. Zhang, Adv. Sci. 2023, 10, 2206978.
- 4J. Li, Y. Cai, H. Wu, Z. Yu, X. Yan, Q. Zhang, T. Z. Gao, K. Liu, X. Jia, Z. Bao, Adv. Energy Mater. 2021, 11, 2003239.
- 5J. Liu, Z. N. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Y. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. H. Yang, X. Q. Yang, J. G. Zhang, Nat. Energy 2019, 4, 180.
- 6Y. Chen, Y. Zhang, J. Niu, H. Xu, Z. Dong, J. Xu, C. Lei, ACS Appl. Energy Mater. 2023, 6, 3113.
- 7K. He, S. H. Cheng, J. Hu, Y. Zhang, H. Yang, Y. Liu, W. Liao, D. Chen, C. Liao, X. Cheng, Z. Lu, J. He, J. Tang, R. K. Y. Li, C. Liu, Angew. Chem., Int. Ed. 2021, 60, 12116.
- 8L. Tang, B. Chen, Z. Zhang, C. Ma, J. Chen, Y. Huang, F. Zhang, Q. Dong, G. Xue, D. Chen, C. Hu, S. Li, Z. Liu, Y. Shen, Q. Chen, L. Chen, Nat. Commun. 2023, 14, 2301.
- 9P. Fan, H. Liu, V. Marosz, N. T. Samuels, S. L. Suib, L. Y. Sun, L. B. Liao, Adv. Funct. Mater. 2021, 31, 2101380.
- 10Y. S. Meng, V. Srinivasan, K. Xu, Science 2022, 378, abq3750.
- 11Y. Ye, X. Zhu, N. Meng, F. Lian, Adv. Funct. Mater. 2023, 33, 2307045.
- 12J. C. Barbosa, R. Goncalves, C. M. Costa, S. Lanceros-Mendez, ACS Omega 2022, 7, 14457.
- 13J. R. Wang, S. Q. Li, Q. Zhao, C. Song, Z. G. Xue, Adv. Funct. Mater. 2021, 31, 2008208.
- 14S. Tang, W. Guo, Y. Fu, Adv. Energy Mater. 2020, 11, 2000802.
- 15Y. L. Liu, Y. Zhao, W. Lu, L. Q. Sun, L. Lin, M. Zheng, X. L. Sun, H. M. Xie, Nano Energy 2021, 88, 106205.
- 16S. Li, F. Lorandi, H. Wang, T. Liu, J. F. Whitacre, K. Matyjaszewski, Prog. Polym. Sci. 2021, 122, 101453.
- 17D. E. Fenton, J. M. Parker, P. V. Wright, Polymer 1973, 14, 589.
- 18X. Zhang, C. Wang, W. Zhao, M. Han, J. Sun, Q. Wang, Eur. Polym. J. 2022, 176, 111400.
- 19Y. Gao, C. Wang, H. Wang, C. Feng, H. Pan, Z. Zhang, J. He, Q. Wang, Chem. Eng. J. 2023, 474, 145446.
- 20N. Meng, F. Lian, G. Cui, Small 2021, 17, 2005762.
- 21R. Bakar, S. Darvishi, T. Li, M. Han, U. Aydemir, S. Nizamoglu, K. Hong, E. Senses, ACS Appl. Polym. Mater. 2021, 4, 179.
- 22S. Wang, L. Zhang, Q. Zeng, X. Liu, W.-Y. Lai, L. Zhang, ACS Sustainable Chem. Eng. 2020, 8, 3200.
- 23M. Zhang, C. Lei, T. Zhou, S. Song, P. Paoprasert, X. He, X. Liang, ACS Appl. Mater. Interfaces 2022, 14, 55653.
- 24D. Cao, X. Sun, Y. Wang, H. Zhu, Energy Storage Mater 2022, 48, 458.
- 25J. J. Sun, K. I. Aly, D. Kuckling, J Polym Sci A Polym Chem 2017, 55, 2104.
- 26C. Wang, X. Zhang, W. Zhao, X. Liu, Q. Wang, J. Sun, Macromolecules 2022, 55, 1030.
- 27A. L. Wang, H. Xu, Q. Zhou, X. Liu, Z. Y. Li, R. Gao, N. Wu, Y. G. Guo, H. Y. Li, L. Y. Zhang, Electrochim. Acta 2016, 212, 372.
- 28Y. Chen, Y. Shi, Y. Liang, H. Dong, F. Hao, A. Wang, Y. Zhu, X. Cui, Y. Yao, ACS Appl. Energy Mater. 2019, 2, 1608.
- 29W. Wen, Q. Zeng, P. Chen, X. Wen, Z. Li, Y. Liu, J. Guan, A. Chen, W. Liu, L. Zhang, Nano Res. 2022, 15, 8946.
- 30B. Jing, X. Wang, Y. Shi, Y. Zhu, H. Gao, S. K. Fullerton-Shirey, Front Chem 2021, 9, 563864.
- 31W. Su, X. H. Luo, H. F. Wang, L. Li, J. Feng, X. Z. Zhang, R. X. Zhuo, Macromol. Rapid Commun. 2011, 32, 390.
- 32M. Tryznowski, K. Tomczyk, Z. Fras, J. Gregorowicz, G. Rokicki, E. Wawrzynska, P. G. Parzuchowski, Macromolecules 2012, 45, 6819.
- 33Y. Su, X. Rong, A. Gao, Y. Liu, J. Li, M. Mao, X. Qi, G. Chai, Q. Zhang, L. Suo, L. Gu, H. Li, X. Huang, L. Chen, B. Liu, Y.-S. Hu, Nat. Commun. 2022, 13, 4181.
- 34J. Mindemark, E. Törmä, B. Sun, D. Brandell, Polymer 2015, 63, 91.
- 35K. Kimura, M. Yajima, Y. Tominaga, Electrochem. Commun. 2016, 66, 46.
- 36J. Chai, Z. Liu, J. Ma, J. Wang, X. Liu, H. Liu, J. Zhang, G. Cui, L. Chen, Adv. Sci. 2017, 4, 1600377.
- 37W. S. He, Z. L. Cui, X. C. Liu, Y. Y. Cui, J. C. Chai, X. H. Zhou, Z. H. Liu, G. L. Cui, Electrochim. Acta 2017, 225, 151.
- 38S. Motokucho, H. Yamada, Y. Suga, H. Morikawa, H. Nakatani, K. Urita, I. Moriguchi, Polymer 2018, 145, 194.
- 39L. Meabe, T. V. Huynh, N. Lago, H. Sardon, C. M. Li, L. A. O'Dell, M. Armand, M. Forsyth, D. Mecerreyes, Electrochim. Acta 2018, 264, 367.
- 40S. Wang, A. Wang, C. Yang, R. Gao, X. Liu, J. Chen, Z. Wang, Q. Zeng, X. Liu, H. Zhou, L. Zhang, J. Power Sources 2018, 395, 137.
- 41Y. H. Zhang, W. Lu, L. N. Cong, J. Liu, L. Q. Sun, A. Mauger, C. M. Julien, H. M. Xie, J. Liu, J. Power Sources 2019, 420, 63.
- 42C. Zuo, G. Chen, Y. Zhang, H. Gan, S. Li, L. Yu, X. Zhou, X. Xie, Z. Xue, J. Membr. Sci. 2020, 607, 118132.
- 43F. Boujioui, H. Damerow, F. Zhuge, J. F. Gohy, Macromol. Chem. Phys. 2020, 221, 1900556.
- 44J. J. Sun, K. I. Aly, D. Kuckling, RSC Adv. 2017, 7, 12550.
- 45T. Eriksson, H. Gudla, Y. Manabe, T. Yoneda, D. Friesen, C. Zhang, Y. Inokuma, D. Brandell, J. Mindemark, Macromolecules 2022, 55, 10940.
- 46Y. Chen, Y. Zhang, W. Liang, H. Xu, Z. Dong, J. Xu, C. Lei, Chem. Commun. 2022, 58, 11961.
- 47H. Matsukizono, T. Endo, Macromol. Chem. Phys. 2017, 218, 1700043.
- 48C. B. Tripathi, S. Mukherjee, J. Org. Chem. 2012, 77, 1592.