Bio-Based, Recyclable and Self-Healing Polyurethane Composites with High Energy Dissipation and Shape Memory
Tao Shou
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorMengyao Zhai
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorYaowen Wu
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorSizhu Wu
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029 China
Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Shikai Hu
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029 China
Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiuying Zhao
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029 China
Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorLiqun Zhang
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029 China
Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorTao Shou
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorMengyao Zhai
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorYaowen Wu
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorSizhu Wu
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029 China
Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Shikai Hu
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029 China
Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Xiuying Zhao
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029 China
Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorLiqun Zhang
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029 China
Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029 China
Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorAbstract
Rubber composites make an important contribution to eliminating vibration and noise owing to their unique viscoelasticity. However, it is important to find alternative bio-based products with high damping properties owing to the shortage of petrochemical resources and poor performance. The ability to self-heal is an additional characteristic that is highly desirable because it can further increase the service life and safety of such products. In this study, a bio-based polylactic acid thermoplastic polyurethane (PLA-TPU) and its composites (PLA-TPU/AO-80) are synthesized. The reversible sacrificial hydrogen bonds in the composites increase the peak value of the loss factor (tan δmax) from 0.87 to 2.12 with a high energy dissipation efficiency of 99% at 50% strain. After being heated for 15 min, the healed sample recovers 81.98% of its comprehensive mechanical properties due to the reorganization of the hydrogen bonds. Its tensile strength remains at 93.4% after recycling five times. Moreover, its shape memory properties show a response temperature close to the human body temperature making it an ideal candidate for medical applications.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
marc202200486-sup-0001-SuppMat.pdf516.2 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Qi, F. Xie, J. Zhang, L. Zhang, D. Yue, RSC Adv. 2019, 9, 42367.
- 2B. Yoon, J.i Y. Kim, U. Hong, M. K. Oh, M. Kim, S. B. Han, J.-D.o Nam, J. Suhr, Composites Part B 2020, 187, 107865.
- 3R. Cao, L. Deng, Z. Feng, X. Zhao, X. Li, L. Zhang, Polymer 2021, 213, 123292.
- 4S. Hu, S. He, Y. Wang, Y. Wu, T. Shou, D. Yin, G. Mu, X. Zhao, Y. Gao, J. Liu, F. Li, M. Guo, L. Zhang, Nano Energy 2022, 95, 107012.
- 5H. Yan, H. Li, W. Li, X. Fan, L. Zhang, M. Zhu, Polym. Eng. Sci 2020, 60, 61.
- 6Y.i Su, F. Wang, S. Zong, Y. Liu, J Rubber Res 2021, 24, 735.
- 7M. Song, X. L. Yue, X.-J. Wang, F.-Y. Cao, Y.-N. Li, C.-H. Su, Q. Qin, Macromol. Mater. Eng 2020, 305, 2000222.
- 8X. Wang, X. Chen, M. Song, Q. Wang, W. Zheng, H. Song, Z. Fan, A. Myat Thu, Ind. Eng. Chem. Res. 2020, 59, 11494.
- 9X. Jiang, M. Xu, M. Wang, Y. Ma, W. Zhang, Y. Zhang, H. Rong, X. Lu, Eur. Polym. J 2022, 162, 110893.
- 10L. Fang, T. Chen, X. Li, C. Lu, Z. Xu, Constr. Build. Mater 2020, 262, 119991.
- 11M. Szycher, Szycher's Handbook of Polyurethanes, 2nd ed., Taylor & Francis, Boca Raton, FL 2013.
- 12M. C. O. Chang, D. A. Thomas, L. H. Sperling, J. Polym. Sci. B Polym. Phys. 1988, 26, 1627.
- 13X. Jiang, R. Qin, M. Wang, M. Xu, Y. Sheng, X. Lu, Polym. Adv. Technol 2021, 32, 2185.
- 14Y. Zhao, T. Shou, S. Fu, X. Qin, S. Hu, X. Zhao, L. Zhang, Macromol. Rapid Commun. 2022, 43, 2100692.
- 15D. Xiang, J. He, T. Cui, L.i Liu, Q.i S. Shi, L. C. Ma, Y. Liang, Macromolecules 2018, 51, 6369.
- 16Z. Shi, J. Kang, L. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 23484.
- 17Y. Liu, L.i Liu, Y. Liang, J. Appl. Polym. Sci. 2020, 137, 49414.
- 18 British Petroleum, Statistical Review of World Energy 2021. London, 2022.
- 19R. M. Cywar, N. A. Rorrer, C. B. Hoyt, G. T. Beckham, E. Y.-X. Chen, Nat. Rev. Mater. 2022, 7, 83.
- 20H. Sardon, D. Mecerreyes, A. Basterretxea, L. Avérous, C. Jehanno, ACS Sustainable Chem. Eng. 2021, 9, 10664.
- 21S. Tang, J. Li, R. Wang, J. Zhang, Y. Lu, G.-H. Hu, Z. Wang, L. Zhang, SusMat 2022, 2, 2.
- 22V. S. D. Voet, J. Guit, K. Loos, Macromol. Rapid Commun. 2021, 42, 2000475.
- 23X. Hou, X. Lu, C. He, Macromol. Rapid Commun. 2022, 43, 2100619.
- 24S.-H. Chen, C.-T. Tsao, H.-C. Chou, C.-H. Chang, C.-T. Hsu, C.-N. Chuang, C.-K. Wang, K.-H. Hsieh, Polym. Int 2013, 62, 1159.
- 25W. Wang, P. Ping, X. Chen, X. Jing, Polym. Int 2007, 56, 840.
- 26X. Zhao, T. Shou, R. Liang, S. Hu, P. Yu, L. Zhang, Ind. Crops. Prod 2020, 154, 112619.
- 27X. Chen, Q. Zhong, C. Cui, L.i Ma, S. Liu, Q. Zhang, Y. Wu, L. An, Y. Cheng, S. Ye, X. Chen, Z. Dong, Q. Chen, Y. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 30847.
- 28N. Zheng, Y. Xu, Q. Zhao, T. Xie, Chem. Rev. 2021, 121, 1716.
- 29F. Sun, J. Xu, T. Liu, F. Li, Y. Poo, Y. Zhang, R. Xiong, C. Huang, J. Fu, Mater. Horiz. 2021, 8, 3356.
- 30C. Shi, Q. Zhang, C. Yu, S. Rao, S. Yang, H. Tian, D. Qu, Adv. Mater. 2020, 32, 2000345.
- 31B. Qin, S. Zhang, P. Sun, B. Tang, Z. Yin, X. Cao, Q. Chen, J. Xu, X. Zhang, Adv. Mater. 2020, 32, 2000096.
- 32W. Zang, X. Liu, J. Li, Y. Jiang, B. Yu, H. Zou, N. Ning, M. Tian, L. Zhang, Chem. Eng. J 2022, 429, 132258.
- 33L. Liu, M. Zhu, X. Xu, X. Li, Z. Ma, Z. Jiang, A. Pich, H. Wang, P. Song, Adv. Mater. 2021, 33, 2105829.
- 34Y. Zhuo, Z. Xia, Y. Qi, T. Sumigawa, J. Wu, P. Šesták, Y. Lu, V. Håkonsen, T. Li, F. Wang, W. Chen, S. Xiao, R. Long, T. Kitamura, L. Li, J. He, Z. Zhang, Adv. Mater. 2021, 33, 2008523.
- 35Q. Ze, X. Kuang, S. Wu, J. Wong, S. M. Montgomery, R. Zhang, J. M. Kovitz, F. Yang, H. J. Qi, R. Zhao, Adv. Mater 2020, 32, 1906657.
- 36L. Xia, Y. Ma, Q.i Wang, J. Meng, J. Geng, Polym. Test 2022, 106, 107455.
- 37Z. Kong, Q. Tian, R. Zhang, J. Yin, L. Shi, W.u B. Ying, H. Hu, C. Yao, K. Wang, J. Zhu, Polymer 2019, 185, 121943.
- 38N. Sun, Z. Wang, X.i Ma, K. Zhang, Z. Wang, Z. Guo, Y. Chen, L. Sun, W. Lu, Y. Liu, M. Di, Ind. Crops Prod. 2021, 174, 114178.
- 39D. Xiao, X. Zhao, Y. Feng, P. Xiang, L. Zhang, W. Wang, J. Appl. Polym. Sci 2010, 116, 2143.
- 40X.-Y. Zhao, Y.-L. Lu, D.-L. Xiao, S.-Z. Wu, L.-Q. Zhang, Macromol. Mater. Eng. 2009, 294, 345.
- 41R. Wang, J. Zhang, H. Kang, L. Zhang, Compos. Sci. Technol 2016, 133, 136.
- 42J. Zhang, H. Zhang, S. Wang, M. Liu, Polym. Degrad. Stab 2017, 144, 93.
- 43F. Lin, Z. Wang, J. Chen, B. Lu, L. Tang, X. Chen, C. Lin, B. Huang, H. Zeng, Y. Chen, J. Mater. Chem. B 2020, 8, 4002.
- 44J. Huang, L. Zhang, Z. Tang, B. Guo, Compos Commun 2018, 8, 65.
- 45S. Chen, L. Sun, X. Zhou, Y. Guo, J. Song, S. Qian, Z. Liu, Q. Guan, E. Meade Jeffries, W. Liu, Y. Wang, C. He, Z. You, Nat. Commun. 2020, 11, 1107.
- 46L. Xu, Z. Huang, Z. Deng, Z. Du, T. L. Sun, Z. Guo, K. Yue, Adv. Mater. 2021, 33, 2105306.
- 47C. Zhang, X. Wang, D. Liang, H. Deng, Z. Lin, P. Feng, Q. Wang, J. Mater. Chem. A 2021, 9, 18431.
- 48Y.u Yanagihara, N. Osaka, S. Iimori, S. Murayama, H. Saito, Mater Today Commun 2015, 2, e9.
- 49W.u B. Ying, G. Wang, Z. Kong, C. K. Yao, Y. Wang, H. Hu, F. Li, C. Chen, Y. Tian, J. Zhang, R. Zhang, J. Zhu, Adv. Funct. Mater. 2021, 31, 2009869.
- 50Q. Zhao, H. J. Qi, T. Xie, Prog. Polym. Sci 2015, 49-50, 79.
- 51C. C. Hornat, M. W. Urban, Prog. Polym. Sci 2020, 102, 101208.