Anion-Doped Thickness-Insensitive Electron Transport Layer for Efficient Organic Solar Cells
Zixian Liu
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorHaoran Tang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorHexiang Feng
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorChing-Hong Tan
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorYoucai Liang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorZhicheng Hu
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Kai Zhang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Fei Huang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYong Cao
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorZixian Liu
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorHaoran Tang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorHexiang Feng
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorChing-Hong Tan
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorYoucai Liang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorZhicheng Hu
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorCorresponding Author
Kai Zhang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Fei Huang
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorYong Cao
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorAbstract
In organic solar cells, interfacial materials play essential roles in charge extraction, transportation, and collection. Currently, highly efficient and thickness-insensitive interfacial materials are urgently needed in printable large area module devices. Herein, water/alcohol-soluble conjugated polyelectrolyte PFNBT-Br, with medium bandgap based on benzothiadiazole, are doped by two alkali metal sodium salts, NaH2PO2, Na2C2O4 with different counter anions, to pursue high efficiency and thickness-insensitive electron-transport layers. Results show that the doping of electron-transport material can effectively promote the performance of the devices. Moreover, electron-transport layers doped by these salts with different counter anions show different behaviors in performances. Among which, the salt with oxalate anion C2O42− (also named Ox2−) shows much better device performance than the salt with hypophosphite anion (H2PO2−), especially under the thick film condition (e.g., 50 nm). The greatly enhanced performances of interfacial material doped by Ox2− are due to reduced series resistance between the active layer material and the electrode, reduced dark-current, improved charge transport, and extraction efficiency, and decreased charge recombination for the devices at thick-film condition. These results demonstrated that n-doping could be a great potential strategy for making thickness-insensitive interfacial layers, besides, the performances can be further improved by carefully selecting salts.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
marc202200190-sup-0001-SuppMat.pdf1,004.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. J. Brabec, M. Heeney, I. McCulloch, J. Nelson, Chem. Soc. Rev. 2011, 40, 1185.
- 2M. Kaltenbrunner, M. S. White, E. D. Glowacki, T. Sekitani, T. Someya, N. S. Sariciftci, S. Bauer, Nat. Commun. 2012, 3, 770.
- 3H. Kang, W. Lee, J. Oh, T. Kim, C. Lee, B. J. Kim, Acc. Chem. Res. 2016, 49, 2424.
- 4J. Peet, A. J. Heeger, G. C. Bazan, Acc. Chem. Res. 2009, 42, 1700.
- 5P. Cheng, X. Zhan, Chem. Soc. Rev. 2016, 45, 2544.
- 6Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. 2009, 109, 5868.
- 7X. Guo, A. Facchetti, T. J. Marks, Chem. Rev. 2014, 114, 8943.
- 8S. Holliday, R. S. Ashraf, A. Wadsworth, D. Baran, S. A. Yousaf, C. B. Nielsen, C. H. Tan, S. D. Dimitrov, Z. Shang, N. Gasparini, M. Alamoudi, F. Laquai, C. J. Brabec, A. Salleo, J. R. Durrant, I. McCulloch, Nat. Commun. 2016, 7, 11585.
- 9F. Liu, Y. Gu, X. B. Shen, S. Ferdous, H. W. Wang, T. P. Russell, Prog. Polym. Sci. 2013, 38, 1990.
- 10F. W. Zhao, C. R. Wang, X. W. Zhan, Adv. Energy Mater. 2018, 8, 1703147.
- 11P. Bi, S. Zhang, Z. Chen, Y. Xu, Y. Cui, T. Zhang, J. Ren, J. Qin, L. Hong, X. Hao, J. Hou, Joule 2021, 5, 2408.
- 12C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, Y. Sun, Nat. Energy 2021, 6, 605.
- 13J. Wang, Z. Zheng, Y. Zu, Y. Wang, X. Liu, S. Zhang, M. Zhang, J. Hou, Adv. Mater. 2021, 33, 2102787.
- 14M. Zhang, L. Zhu, G. Zhou, T. Hao, C. Qiu, Z. Zhao, Q. Hu, B. W. Larson, H. Zhu, Z. Ma, Z. Tang, W. Feng, Y. Zhang, T. P. Russell, F. Liu, Nat. Commun. 2021, 12, 309.
- 15C. He, C. M. Zhong, H. B. Wu, R. Q. Yang, W. Yang, F. Huang, G. C. Bazan, Y. Cao, J. Mater. Chem. 2010, 20, 2617.
- 16J. Wang, K. Lin, K. Zhang, X. F. Jiang, K. Mahmood, L. Ying, F. Huang, Y. Cao, Adv. Energy Mater. 2016, 6, 1502563.
- 17K. Zhang, C. Zhong, S. Liu, C. Mu, Z. Li, H. Yan, F. Huang, Y. Cao, ACS Appl. Mater. Interfaces 2014, 6, 10429.
- 18Y. Zhao, Z. Y. Xie, C. J. Qin, Y. Qu, Y. H. Geng, L. X. Wang, Sol. Energy Mater. Sol. Cells 2009, 93, 604.
- 19C. Y. Chang, C. E. Wu, S. Y. Chen, C. Cui, Y. J. Cheng, C. S. Hsu, Y. L. Wang, Y. Li, Angew. Chem., Int. Ed. 2011, 50, 9386.
- 20C. Z. Li, C. Y. Chang, Y. Zang, H. X. Ju, C. C. Chueh, P. W. Liang, N. Cho, D. S. Ginger, A. K. Jen, Adv. Mater. 2014, 26, 6262.
- 21Y. C. Shao, Y. B. Yuan, J. S. Huang, Nat. Energy 2016, 1, 15001.
- 22R. Xue, J. Zhang, Y. Li, Y. Li, Small 2018, 14, e1801793.
- 23F. Zhang, W. Shi, J. Luo, N. Pellet, C. Yi, X. Li, X. Zhao, T. J. S. Dennis, X. Li, S. Wang, Y. Xiao, S. M. Zakeeruddin, D. Bi, M. Gratzel, Adv. Mater. 2017, 29, 1606806.
- 24X. Zhao, X. Zhan, Chem. Soc. Rev. 2011, 40, 3728.
- 25Z. Wu, C. Sun, S. Dong, X. F. Jiang, S. Wu, H. Wu, H. L. Yip, F. Huang, Y. Cao, J. Am. Chem. Soc. 2016, 138, 2004.
- 26Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Bredas, S. R. Marder, A. Kahn, B. Kippelen, Science 2012, 336, 327.
- 27S. Liu, K. Zhang, J. Lu, J. Zhang, H. L. Yip, F. Huang, Y. Cao, J. Am. Chem. Soc. 2013, 135, 15326.
- 28Y. Xia, C. Wang, B. Dong, G. Wang, Y. Chen, R. C. I. MacKenzie, W. Dong, S. Ruan, Y. Liu, S. Wen, ACS Appl. Mater. Interfaces 2021, 13, 14423.
- 29L. Nian, W. Zhang, N. Zhu, L. Liu, Z. Xie, H. Wu, F. Wurthner, Y. Ma, J. Am. Chem. Soc. 2015, 137, 6995.
- 30J. Duan, Y. Yu, M. Zeng, C. Weng, B. Zhao, S. Tan, ACS Appl. Mater. Interfaces 2020, 12, 44679.
- 31S. Qu, J. Yu, J. Cao, X. Liu, H. Wang, S. Guang, W. Tang, Sci. China Mater. 2020, 64, 808.
- 32Y. Zhang, Z. Zhang, G. Xie, Z. Su, Z. Deng, J. Liu, D. Wang, Y. Huang, J. Zhang, Phys. Status Solidi A 2021, 219, 9.
- 33Z. Q. Zhang, Z. L. Zhang, Y. F. Yu, B. Zhao, S. Li, J. Zhang, S. T. Tan, J. Energy Chem. 2020, 47, 196.
- 34C. G. Tang, M. N. Syafiqah, Q. M. Koh, C. Zhao, J. Zaini, Q. J. Seah, M. J. Cass, M. J. Humphries, I. Grizzi, J. H. Burroughes, R. Q. Png, L. L. Chua, P. K. H. Ho, Nature 2019, 573, 519.
- 35S. Saha, Acc. Chem. Res. 2018, 51, 2225.
- 36Z. C. Hu, X. Zhang, Q. W. Yin, X. C. Liu, X. F. Jiang, Z. M. Chen, X. Y. Yang, F. Huang, Y. Cao, Nano Energy 2019, 60, 775.
- 37N. Shin, J. Zessin, M. H. Lee, M. Hambsch, S. C. B. Mannsfeld, Adv. Funct. Mater. 2018, 28, 1802265.
- 38B. Lüssem, M. Riede, K. Leo, Phys. Status Solidi A 2013, 210, 9.
- 39M. P. de Jong, A. W. Denier van der Gon, X. Crispin, W. Osikowicz, W. R. Salaneck, L. Groenendaal, J. Chem. Phys. 2003, 118, 6495.
- 40J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 2019, 3, 1140.
- 41Y. Li, Acc. Chem. Res. 2012, 45, 723.
- 42J. D. Servaites, M. A. Ratner, T. J. Marks, Energ. Environ. Sci. 2011, 4, 4410.
- 43B. Qi, J. Wang, Phys. Chem. Chem. Phys. 2013, 15, 8972.
- 44J. C. Wang, X. C. Ren, S. Q. Shi, C. W. Leung, P. K. L. Chan, Org. Electron. 2011, 12, 880.
- 45J. Wagner, M. Gruber, A. Wilke, Y. Tanaka, K. Topczak, A. Steindamm, U. Hormann, A. Opitz, Y. Nakayama, H. Ishii, J. Pflaum, N. Koch, W. Brutting, J. Appl. Phys. 2012, 111, 054509.
- 46W. Tress, S. Corvers, K. Leo, M. Riede, Adv. Energy Mater. 2013, 3, 873.
- 47I. Torres, D. M. Taylor, J. Appl. Phys. 2005, 98, 073710.
- 48S. Guha, F. S. Goodson, S. Roy, L. J. Corson, C. A. Gravenmier, S. Saha, J. Am. Chem. Soc. 2011, 133, 15256.
- 49E. A. Keiter, J. E. Huheey, R. L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed., Harper Collins, New York, USA 1993.
- 50P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, D. E. Markov, Adv. Mater. 2007, 19, 1551.
- 51V. D. Mihailetchi, H. X. Xie, B. de Boer, L. J. A. Koster, P. W. M. Blom, Adv. Funct. Mater. 2006, 16, 699.
- 52J. A. Christians, R. C. Fung, P. V. Kamat, J. Am. Chem. Soc. 2014, 136, 758.
- 53F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Sero, J. Bisquert, Phys. Chem. Chem. Phys. 2011, 13, 9083.
- 54Y. Zhang, L. R. Li, S. S. Yuan, G. Q. Li, W. F. Zhang, Electrochim. Acta 2013, 109, 221.
- 55Y. Lin, Y. Firdaus, F. H. Isikgor, M. I. Nugraha, E. Yengel, G. T. Harrison, R. Hallani, A. El-Labban, H. Faber, C. Ma, X. Zheng, A. Subbiah, C. T. Howells, O. M. Bakr, I. McCulloch, S. D. Wolf, L. Tsetseris, T. D. Anthopoulos, ACS Energy Lett. 2020, 5, 2935.
- 56E. P. Yao, C. C. Chen, J. Gao, Y. S. Liu, Q. Chen, M. Cai, W. C. Hsu, Z. R. Hong, G. Li, Y. Yang, Sol. Energy Mater. Sol. Cells 2014, 130, 20.