Effect of Chain-End Chemistries on the Efficiency of Coupling Antibodies to Polymers Using Unnatural Amino Acids
Amal J. Sivaram
Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072 Australia
Search for more papers by this authorAndri Wardiana
Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072 Australia
Search for more papers by this authorS. S. Hema Preethi
Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072 Australia
Search for more papers by this authorAdrian V. Fuchs
Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072 Australia
Search for more papers by this authorChristopher B. Howard
Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072 Australia
Search for more papers by this authorNicholas L. Fletcher
Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072 Australia
Search for more papers by this authorCorresponding Author
Craig A. Bell
Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072 Australia
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Kristofer J. Thurecht
Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072 Australia
E-mail: [email protected]; [email protected]
Search for more papers by this authorAmal J. Sivaram
Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072 Australia
Search for more papers by this authorAndri Wardiana
Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072 Australia
Search for more papers by this authorS. S. Hema Preethi
Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072 Australia
Search for more papers by this authorAdrian V. Fuchs
Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072 Australia
Search for more papers by this authorChristopher B. Howard
Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072 Australia
Search for more papers by this authorNicholas L. Fletcher
Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072 Australia
Search for more papers by this authorCorresponding Author
Craig A. Bell
Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072 Australia
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Kristofer J. Thurecht
Australian Institute for Bioengineering and Nanotechnology, Centre for Advanced Imaging, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, 4072 Australia
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Novel conjugates that incorporate strategies for increasing the therapeutic payload, such as targeted polymeric delivery vehicles, have great potential in overcoming limitations of conventional antibody therapies that often exhibit immunogenicity and limited drug loading. Click chemistry has significantly expanded the toolbox of effective strategies for developing hybrid polymer-biomolecule conjugates, however, effective systems require orthogonality between the polymer and biomolecule chemistries to achieve efficient coupling. Here, three cycloaddition-based strategies for antibody conjugation to polymeric carriers are explored and show that a purely radical-based method for polymer synthesis and subsequent biomolecule attachment has a trade-off between coupling efficiency of the antibody and the ability to synthesize polymers with controlled chemical properties. It is shown that careful consideration of both coupling chemistries as well as the potential effect of how this modulates the chemical properties of the polymer nanocarrier should be considered during the development of such systems. The strategies described offer insight into improving conjugate development for therapeutic and theranostic applications. In this system, polymerization using conventional and established reversible addition fragmentation chain transfer (RAFT) agents, followed by multiple post-modification steps, always leads to systems with more defined chemical architectures compared to strategies that utilize alkyne-functional RAFT agents.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
marc202000294-sup-0001-SuppMat.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. G. Smaglo, D. Aldeghaither, L. M. Weiner, Nat. Rev. Clin. Oncol. 2014, 11, 637.
- 2P. Chames, M. Van Regenmortel, E. Weiss, D. Baty, Br. J. Pharmacol. 2009, 157, 220.
- 3A. T. Lucas, L. S. Price, A. N. Schorzman, M. Storrie, J. A. Piscitelli, J. Razo, W. C. Zamboni, Antibodies 2018, 7, 10.
- 4H. de Puig, I. Bosch, M. Carré-Camps, K. Hamad-Schifferli, Bioconjugate Chem. 2017, 28, 230.
- 5Z. A. Ahmad, S. K. Yeap, A. M. Ali, W. Y. Ho, N. B. M. Alitheen, M. Hamid, Clin. Dev. Immunol. 2012, 2012, 980250.
- 6A. C. Freise, A. M. Wu, Mol. Immunol. 2015, 67, 142.
- 7J. M. Lambert, A. Berkenblit, Annu. Rev. Med. 2018, 69, 191.
- 8A. V. Fuchs, B. W. Tse, A. K. Pearce, M. C. Yeh, N. L. Fletcher, S. S. Huang, W. D. Heston, A. K. Whittaker, P. J. Russell, K. J. Thurecht, Biomacromolecules 2015, 16, 3235.
- 9A. J. Sivaram, A. Wardiana, C. B. Howard, S. M. Mahler, K. J. Thurecht, Adv. Healthcare Mater. 2018, 7, 1700607.
- 10S. K. Sharma, J. M. Glaser, K. J. Edwards, E. K. Sarbisheh, A. K. Salih, J. S. Lewis, E. W. Price, Bioconjugate Chem. 2020.
- 11X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, J. Am. Chem. Soc. 2006, 128, 2115.
- 12C. E. Hagemeyer, K. Alt, A. P. R. Johnston, G. K. Such, H. T. Ta, M. K. M. Leung, S. Prabhu, X. Wang, F. Caruso, K. Peter, Nat. Protoc. 2015, 10, 90.
- 13C. B. Howard, N. Fletcher, Z. H. Houston, A. V. Fuchs, N. R. B. Boase, J. D. Simpson, L. J. Raftery, T. Ruder, M. L. Jones, C. J. de Bakker, S. M. Mahler, K. J. Thurecht, Adv. Healthcare Mater. 2016, 5, 2055.
- 14Y. M. Zhao, N. L. Fletcher, A. Gemmell, Z. H. Houston, C. B. Howard, I. Blakey, T. Q. Liu, K. J. Thurecht, Adv. Ther. 2020, 3, 1900202.
- 15N. Kotagiri, Z. Li, X. Xu, S. Mondal, A. Nehorai, S. Achilefu, Bioconjugate Chem. 2014, 25, 1272.
- 16J. W. Chin, S. W. Santoro, A. B. Martin, D. S. King, L. Wang, P. G. Schultz, J. Am. Chem. Soc. 2002, 124, 9026.
- 17C. R. Becer, S. Hahn, M. W. M. Fijten, H. M. L. Thijs, R. Hoogenboom, U. S. Schubert, J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 7138.
- 18M. A. Ward, T. K. Georgiou, Polymers 2011, 3, 1215.
- 19A. K. Pearce, A. V. Fuchs, N. L. Fletcher, K. J. Thurecht, Pharm. Res. 2016, 33, 2388.
- 20A. K. Pearce, B. E. Rolfe, P. J. Russell, B. W. C. Tse, A. K. Whittaker, A. V. Fuchs, K. J. Thurecht, Polym. Chem. 2014, 5, 6932.
- 21M. Eberhardt, R. Mruk, R. Zentel, P. Théato, Eur. Polym. J. 2005, 41, 1569.
- 22G. C. Tron, T. Pirali, R. A. Billington, P. L. Canonico, G. Sorba, A. A. Genazzani, Med. Res. Rev. 2008, 28, 278.
- 23D. J. Coles, B. E. Rolfe, N. R. B. Boase, R. N. Veedu, K. J. Thurecht, Chem. Commun. 2013, 49, 3836.
- 24D. Moatsou, J. Li, A. Ranji, A. Pitto-Barry, I. Ntai, M. C. Jewett, R. K. O'Reilly, Bioconjugate Chem. 2015, 26, 1890.
- 25M. M. Kamphuis, A. P. Johnston, G. K. Such, H. H. Dam, R. A. Evans, A. M. Scott, E. C. Nice, J. K. Heath, F. Caruso, J. Am. Chem. Soc. 2010, 132, 15881.
- 26S. I. Presolski, V. Hong, S.-H. Cho, M. G. Finn, J. Am. Chem. Soc. 2010, 132, 14570.
- 27J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V. Chang, I. A. Miller, A. Lo, J. A. Codelli, C. R. Bertozzi, Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 16793.
- 28R. Pola, A. Braunová, R. Laga, M. Pechar, K. Ulbrich, Polym. Chem. 2014, 5, 1340.
- 29R. Chapman, M. L. Koh, G. G. Warr, K. A. Jolliffe, S. Perrier, Chem. Sci. 2013, 4, 2581.
- 30R. Rossin, S. M. J. van Duijnhoven, W. ten Hoeve, H. M. Janssen, L. H. J. Kleijn, F. J. M. Hoeben, R. M. Versteegen, M. S. Robillard, Bioconjugate Chem. 2016, 27, 1697.
- 31S. S. Chang, V. E. Reuter, W. D. W. Heston, N. H. Bander, L. S. Grauer, P. B. Gaudin, Cancer Res. 1999, 59, 3192.
- 32A. K. Pearce, J. D. Simpson, N. L. Fletcher, Z. H. Houston, A. V. Fuchs, P. J. Russell, A. K. Whittaker, K. J. Thurecht, Biomaterials 2017, 141, 330.