Layer-by-Layer Assembled Nanotubes as Biomimetic Nanoreactors for Calcium Carbonate Deposition
Qiang He
Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam, Germany
Search for more papers by this authorHelmuth Möhwald
Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam, Germany
Search for more papers by this authorCorresponding Author
Junbai Li
Beijing National Laboratory for Molecular Sciences (BNLMS), International Joint Lab, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, P. R. China
Beijing National Laboratory for Molecular Sciences (BNLMS), International Joint Lab, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, P. R. China. Fax: +86 10 82612629Search for more papers by this authorQiang He
Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam, Germany
Search for more papers by this authorHelmuth Möhwald
Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam, Germany
Search for more papers by this authorCorresponding Author
Junbai Li
Beijing National Laboratory for Molecular Sciences (BNLMS), International Joint Lab, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, P. R. China
Beijing National Laboratory for Molecular Sciences (BNLMS), International Joint Lab, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, P. R. China. Fax: +86 10 82612629Search for more papers by this authorAbstract
Enzyme-loaded magnetic polyelectrolyte multilayer nanotubes prepared by layer-by-layer assembly combined with the porous template could be used as biomimetic nanoreactors. It is demonstrated that calcium carbonate can be biomimetically synthesized inside the cavities of the polyelectrolyte nanotubes by the catalysis of urease, and the size of the calcium carbonate precipitates was controlled by the cavity dimensions. The metastable structure of the calcium carbonate precipitates inside the nanotubes was protected by the outer shell of the polyelectrolyte multilayers. These features may allow polyelectrolyte nanotubes to be applied in the fields of nanomaterials synthesis, controlled release, and drug delivery.
References
- 1 M. Sarikaya, C. Tamerler, A. K. Y. Yen, K. Schulten, F. Baneyx, Nat. Mater. 2003, 2, 577.
- 2 B. D. Ratner, S. J. Bryant, Annu. Rev. Biomed. Eng. 2004, 6, 41.
- 3 C. Sanchez, H. Arribart, M. Madeleine, G. Guille, Nat. Mater. 2005, 4, 277.
- 4 Q. He, L. Duan, W. Qi, K. W. Wang, Y. Cui, X. H. Yan, J. B. Li, Adv. Mater. 2008, 20, 2933.
- 5 K. Ariga, J. P. Hill, M. V. Lee, A. Vinu, R. Charvet, S. Acharya, Sci. Technol. Adv. Mater. 2008, 9, 014109.
- 6 A. W. Xu, Y. R. Ma, H. Cölfen, J. Mater. Chem. 2007, 17, 415.
- 7 G. A. Ozin, Acc. Chem. Res. 1997, 30, 17.
- 8 M. B. Dickerson, K. H. Sandhage, R. R. Naik, Chem. Rev. 2008, 108, 4935.
- 9 J. N. Cha, G. D. Stucky, D. E. Morse, T. J. Deming, Nature 2000, 403, 289.
- 10 N. A. J. M. Sommerdijk, G. de With, Chem. Rev. 2008, 108, 4499.
- 11 F. C. Meldrum, H. Cölfen, Chem. Rev. 2008, 108, 4332.
- 12 J. Aizenberg, A. J. Black, G. M. Whitesides, Nature 1998, 394, 868.
- 13 S. Mann, B. R. Heywood, S. Rajam, J. D. Birchall, Nature 1988, 334, 692.
- 14 G. Z. Cao, D. W. Liu, Adv. Colloid Interface Sci. 2008, 136, 45.
- 15 J. T. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res. 1999, 32, 435.
- 16 W. Q. Han, P. Kohler-Redlich, C. Scheu, F. Ernst, M. Rühle, N. Grobert, M. Terrones, H. W. Kroto, D. R. M. Walton, Adv. Mater. 2000, 12, 1356.
- 17 J. Q. Hu, Y. Bando, J. H. Zhan, C. Y. Zhi, D. Golberg, Nano Lett. 2006, 6, 1136.
- 18 M. Remskar, A. Mrzel, M. Virsek, A. Jesih, Adv. Mater. 2007, 19, 4276.
- 19 D. G. Shchukin, G. B. Sukhorukov, R. R. Price, Y. M. Lvov, Small 2005, 1, 510.
- 20 M. Reches, E. Gazit, Science 2003, 300, 625.
- 21 B. Yang, S. Kamiya, Y. Shimizu, N. Koshizaki, T. Shimizu, Chem. Mater. 2004, 16, 2826.
- 22 S. F. Ai, G. Lu, Q. He, J. B. Li, J. Am. Chem. Soc. 2003, 125, 11140.
- 23 K. Ariga, J. P. Hill, Q. M. Ji, Phys. Chem. Chem. Phys. 2007, 9, 2319.
- 24 Q. He, Y. Cui, S. F. Ai, Y. Tian, J. B. Li, Curr. Opin. Colloid Interface Sci. 2009, 14, 115.
- 25 Y. J. Wang, A. S. Angelatos, F. Caruso, Chem. Mater. 2008, 20, 848.
- 26 Y. Tian, Q. He, Y. Cui, C. Tao, J. B. Li, Chem. Eur. J. 2006, 12, 4808.
- 27 S. Hou, J. H. Wang, C. R. Martin, J. Am. Chem. Soc. 2005, 127, 8586.
- 28 Y. Tian, Q. He, C. Tao, J. B. Li, Langmuir 2006, 22, 360.
- 29 Q. He, Y. Tian, H. Möhwald, J. B. Li, Soft Matter 2009, 5, 300.
- 30 Q. He, Y. Tian, Y. Cui, H. Möhwald, J. B. Li, J. Mater. Chem. 2008, 18, 748.
- 31 D. Lee, R. E. Cohen, M. F. Rubner, Langmuir 2007, 23, 123.
- 32 Q. He, W. X. Song, H. Möhwald, J. B. Li, Langmuir 2008, 24, 5508.
- 33 S. D. Cesareo, S. R. Langton, FEMS Micobiol. Lett. 1992, 78, 15.
- 34 Y. Lvov, A. A. Antipov, A. Mamedov, H. Möhwald, G. B. Sukhorukov, Nano Lett. 2001, 1, 125.
- 35 A. Antipov, D. Shchukin, Y. Fedutik, I. Zanaveskina, V. Klechkovskaya, G. B. Sukhorukov, H. Möhwald, Macromol. Rapid Commun. 2003, 24, 274.
- 36 A. M. Yu, I. Gentle, G. Q. Lu, F. Caruso, Chem. Commun. 2006, 2150.
- 37 Q. Xing, S. R. Eadula, Y. M. Lvov, Biomacromolecules 2007, 8, 1987.
- 38 I. Sondi, E. Matijevic, J. Colloid Interface Sci. 2001, 238, 208.
- 39 C. Shivkumara, P. Singh, A. Gupta, M. S. Hegde, Mater. Res. Bull. 2006, 41, 1455.