NMR Reveals Non-Distributed and Uniform Character of Network Chain Dynamics
Corresponding Author
Kay Saalwächter
Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Friedemann-Bach-Platz 6, D-06018 Halle, Germany
Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Friedemann-Bach-Platz 6, D-06018 Halle, Germany.Search for more papers by this authorJens-Uwe Sommer
Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, D-01069 Dresden, Germany
Search for more papers by this authorCorresponding Author
Kay Saalwächter
Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Friedemann-Bach-Platz 6, D-06018 Halle, Germany
Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Friedemann-Bach-Platz 6, D-06018 Halle, Germany.Search for more papers by this authorJens-Uwe Sommer
Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, D-01069 Dresden, Germany
Search for more papers by this authorAbstract
Results of different NMR investigations of elastomers are reviewed with respect to their significance for statistical models of rubber elasticity. In contrast to earlier work based on lineshape analysis and relaxometry, results of recent multiple-quantum experiments indicate that the NMR-detected dynamic chain order parameter, which reflects the conformational space of individual monomer units at which the signal is detected locally, is a rather narrowly distributed quantity. Constraints to the dynamics and the conformations of a network chain thus act uniformly and appear as a dynamic average over chains of different length and with different end-to-end separations. All our findings are in good agreement with large-scale computer simulations. Anomalies on swelling such as chain desinterspersion at the early stages and the appearance of heterogeneities, are also discussed.
References
- 1 M. Doi, S. F. Edwards, “ The Theory of Polymer Dynamics”, Clarendon Press, Oxford 1986.
- 2 P. J. Flory, “ Principles of Polymer Chemistry”, Cornell University Press, Ithaca 1953.
- 3 M. Rubinstein, S. Panyukov, Macromolecules 2002, 35, 6670.
- 4 M. Rubinstein, R. H. Colby, “ Polymer Physics”, Oxford University Press, New York 2003.
- 5 J. P. Cohen-Addad, R. Dypeyre, Polymer 1983, 24, 400.
- 6 M. G. Brereton, Macromolecules 1989, 22, 3667.
- 7 P. Sotta, B. Deloche, Macromolecules 1990, 23, 1999.
- 8 M. G. Brereton, Macromolecules 1993, 26, 1152.
- 9 P. Sotta, C. Fülber, D. E. Demco, B. Blümich, H. W. Spiess, Macromolecules 1996, 29, 6222.
- 10 M. Warner, P. T. Callaghan, E. T. Samulski, Macromolecules 1997, 30, 4733.
- 11 P. Sotta, Macromolecules 1998, 31, 3872.
- 12 M. E. Ries, M. G. Brereton, P. G. Klein, I. M. Ward, P. Ekanayake, H. Menge, H. Schneider, Macromolecules 1999, 32, 4961.
- 13 S. Lay, J.-U. Sommer, A. Blumen, J. Chem. Phys. 1999, 110, 12173.
- 14 J.-U. Sommer, K. Saalwächter, Eur. Phys. J. E 2005, 18, 167.
- 15 J. P. Cohen-Addad, Progr. NMR Spectrosc. 1993, 25, 1.
- 16 W. Kuhn, F. Grün, Kolloid-Z. 1942, 101, 248.
- 17 J. P. Cohen-Addad, J. Chem. Phys. 1973, 60, 2440.
- 18 Yu. Ya. Gotlib, M. I. Lifshitz, V. A. Shevelev, I. S. Lishanskij, I. V. Balanina, Vysokomol. Soed A18 1976, 10, 2299.
- 19 A. Charlesby, R. Folland, J. H. Steven, Proc. R. Soc. Lond. A 1977, 355, 189.
- 20 V. D. Fedotov, V. M. Chernov, T. N. Khazanovich, Vysokomol. Soed. A 1978, 20, 919.
- 21 J. P. Cohen-Addad, M. Domard, S. Boileau, J. Chem. Phys. 1981, 75, 4107.
- 22 G. Simon, A. Birnstiel, K.-H. Schimmel, Polym. Bull. 1989, 21, 235.
- 23 M. G. Brereton, I. M. Ward, N. Boden, P. Wright, Macromolecules 1991, 24, 2068.
- 24 G. Simon, K. Baumann, W. Gronski, Macromolecules 1992, 25, 3624.
- 25 M. Knörgen, H. Menge, G. Hempel, H. Schneider, M. E. Ries, Polymer 2002, 43, 4091.
- 26 V. M. Litvinov, P. P. De, Eds., “ Spectroscopy of Rubbers and Rubbery Materials”, Rapra Technology Ltd., Shawbury 2002.
- 27 P. G. Klein, M. E. Ries, Progr. NMR Spectrosc. 2003, 42, 31.
- 28 J. Baum, A. Pines, J. Am. Chem. Soc. 1986, 108, 7447.
- 29 R. Graf, A. Heuer, H. W. Spiess, Phys. Rev. Lett. 1998, 80, 5738.
- 30 R. Graf, D. E. Demco, S. Hafner, H. W. Spiess, Solid State Nucl. Magn. Reson. 1998, 12, 139–152.
- 31 M. Schneider, L. Gasper, D. E. Demco, B. Blümich, J. Chem. Phys. 1999, 111, 402–415.
- 32 K. Saalwächter, Progr. NMR Spectrosc. 2007, 57, 1–35.
- 33 K. Saalwächter, P. Ziegler, O. Spyckerelle, B. Haidar, A. Vidal, J.-U. Sommer, J. Chem. Phys. 2003, 119, 3468.
- 34 K. Saalwächter, J. Am. Chem. Soc. 2003, 125, 14684.
- 35 K. Saalwächter, B. Herrero, M. A. López-Manchado, Macromolecules 2005, 38, 9650.
- 36 K. Saalwächter, A. Heuer, Macromolecules 2006, 39, 3291.
- 37 R. W. Brotzman, B. E. Eichinger, Macromolecules 1981, 14, 1445.
- 38 M. Gottlieb, R. J. Gaylord, Macromolecules 1984, 17, 2024.
- 39 J. U. Sommer, T. A. Vilgis, G. Heinrich, J. Chem. Phys. 1994, 100, 9181.
- 40 J. P. Cohen-Addad, J. Physique 1982, 43, 1509.
- 41 M. G. Brereton, Macromolecules 1990, 23, 1119.
- 42 M. G. Brereton, J. Chem. Phys. 1991, 94, 2136.
- 43 P. Sotta, B. Deloche, J. Chem. Phys. 1994, 100, 4591.
- 44 M. Akke, R. Brüschweiler, A. G. Palmer, J. Am. Chem. Soc. 1993, 115, 9832.
- 45 D. Yang, L. E. Kay, J. Mol. Biol. 1996, 263, 369.
- 46 K. Saalwächter, F. Kleinschmidt, J.-U. Sommer, Macromolecules 2004, 37, 8556.
- 47 J. U. Sommer, S. Lay, Macromolecules 2002, 35, 9832.
- 48 S. Panyukov, Y. Rabin, Phys. Rep. 1996, 269, 1.
- 49 B. Mergell, R. Everaers, Macromolecules 2001, 34, 5675.
- 50 J. U. Sommer, T. Russ, B. Brenn, M. Geoghegan, Europhys. Lett. 2002, 57, 32.
- 51 E. Schillé, J. P. Cohen-Addad, A. Guillermo, Macromolecules 2004, 37, 2144.
- 52 J.-P. Jarry, L. Monnerie, Macromolecules 1979, 12, 316.
- 53 B. Deloche, E. T. Samulski, Macromolecules 1988, 21, 3107.
- 54 J. D. Schieber, J. Neergaard, S. Gupta, J. Rheol. 2003, 47, 213.