Infinitely many low- and high-energy solutions for double-phase problems with variable exponent
Chun-Bo Lian
College of Mathematical Sciences, Harbin Engineering University, Harbin, China
Search for more papers by this authorQing-Hai Cao
College of Mathematical Sciences, Harbin Engineering University, Harbin, China
Search for more papers by this authorCorresponding Author
Bin Ge
College of Mathematical Sciences, Harbin Engineering University, Harbin, China
Correspondence
Bin Ge, College of Mathematical Sciences, Harbin Engineering University, Harbin, China.
Email: [email protected]
Search for more papers by this authorChun-Bo Lian
College of Mathematical Sciences, Harbin Engineering University, Harbin, China
Search for more papers by this authorQing-Hai Cao
College of Mathematical Sciences, Harbin Engineering University, Harbin, China
Search for more papers by this authorCorresponding Author
Bin Ge
College of Mathematical Sciences, Harbin Engineering University, Harbin, China
Correspondence
Bin Ge, College of Mathematical Sciences, Harbin Engineering University, Harbin, China.
Email: [email protected]
Search for more papers by this authorAbstract
The aim of this paper is the study of double-phase problems with variable exponent. Using the Clark's theorem and the symmetric mountain pass lemma, we prove the existence of infinitely many small solutions and infinitely many large solutions, respectively.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this paper as no new data were created or analyzed in this study.
REFERENCES
- 1V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 675–710.
- 2V. V. Zhikov, On Lavrentiev's Phenomenon, Russian J. Math. Phys. 3 (1995), 249–269.
- 3V. V. Zhikov, On some variational problems, Russian J. Math. Phys. 5 (1997), 105–116.
- 4V. V. Zhikov, S. M. Kozlov, and O. A. Oleinik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994.
- 5M. A. Ragusa and A. Tachikaw, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal. 9 (2020), no. 1, 710–728.
- 6S. S. Byun and H. S. Lee, Gradient estimates of -minimizers to Double -phase variational problems with variable exponents, Q. J. Math. 72 (2021), 1191–1221.
10.1093/qmath/haaa067 Google Scholar
- 7S. S. Byun and H. S. Lee, Calderon–Zygmund estimates for elliptic double-phase problems with variable exponents, J. Math. Anal. Appl. 501 (2021), no. 1, 124015.
- 8S. Baasandorj, S. S. Byun, and H. Lee, Gradient estimates for Orlicz double -phase problems with variable exponents, Nonlinear Anal. 221 (2022), 112891.
10.1016/j.na.2022.112891 Google Scholar
- 9F. Colasuonno and M. Squassina, Eigenvalues for double -phase variational integrals, Ann. Mat. Pura Appl. 195 (2016), 1917–1959.
- 10B. Ge, D. J. Lv, and J. F. Lu, Multiple solutions for a class of double -phase problem without the Ambrosetti–Rabinowitz conditions, Nonlinear Anal. 188 (2019), 294–315.
- 11B. Ge and Z. Y. Chen, Existence of infinitely many solutions for double -phase problem with sign-changing potential, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 4 (2019), 3185–3196.
10.1007/s13398-019-00684-7 Google Scholar
- 12B. Ge, W. S. Yuan, and X. F. Cao, Existence and nonexistence of solutions for the double -phase problem, Results Math. 76 (2021), 132.
10.1007/s00025-021-01444-z Google Scholar
- 13N. S. Papageorgiou, A. Pudelko, and V. D. Radulescu, Non-autonomous -equations with unbalanced growth, Math. Annal. 385 (2023), 1707–1745.
- 14Z. H. Liu and N. S. Papageorgiou, Double -phase Dirichlet problems with unilateral constraints, J. Differ. Equ. 316 (2022), 249–269.
10.1016/j.jde.2022.01.040 Google Scholar
- 15N. S. Papageorgiou, V. D. Radulescu, and D. D. Repovs, Double-phase problems and a discontinuity property of the spectrum, Proc. Amer. Math. Soc. 147 (2019), 2899–2910.
10.1090/proc/14466 Google Scholar
- 16N. S. Papageorgiou, Double -phase problems: a survey of some recent results, Opuscula Math. 42 (2022), 257–278.
- 17M. Cencelj, V. D. Radulescu, and D. D. Repovs, Double -phase problems with variable growth, Nonlinear Anal. 177 (2018), 270–287.
- 18L. Gasinski and P. Winkert, Constant sign solutions for double -phase problems with superlinear nonlinearity, Nonlinear Anal. 195 (2020), 111739.
- 19L. Gasinski and P. Winkert, Existence and uniqueness results for double -phase problems with convection term, J. Differ. Equ. 268 (2020), 4183–4193.
- 20S. D. Zeng, L. Gasinski, P. Winkert, and Y. R. Bai, Existence of solutions for double -phase obstacle problems with multivalued convection term, J. Math. Anal. Appl. 501 (2021), 123997.
- 21N. S. Papageorgiou, C. Vetro, and F. Vetro, Multiple solutions for parametric double -phase Dirichlet problems, Commun. Contemp. Math. 23 (2021), 2050006.
- 22N. S. Papageorgiou, V. D. Radulescu, and Y. Zhang, Resonant double -phase equations, Nonlinear Anal. Real World Appl. 64 (2022), 103454.
- 23L. Gasinski and N. S. Papageorgiou, Constant sign and nodal solutions for superlinear double -phase problems, Adv. Calc. Var. 14 (2021), 613–626.
- 24F. Vetro and P. Winkert, Constant sign solutions for double -phase problems with variable exponents, Appl. Math. Lett. 135 (2023), 108404.
- 25S. D. Zeng, V. D. Radulescu, and P. Winkert, Double obstacle phase problems with variable exponent, Adv. Differ. Equ. 27 (2022), 611–645.
- 26A. Crespo-Blanco, L. Gasinski, P. Harjulehto, and P. Winkert, A new class of double -phase variable exponent problems: existence and uniqueness, J. Differ. Equ. 323 (2022), 182–228.
- 27I. H. Kim, Y. H. Kim, M. W. Oh, and S. D. Zeng, Existence and multiplicity of solutions to concave–convex-type double-phase problems with variable exponent, Nonlinear Anal. Real World Appl. 67 (2022), 103627.
- 28G. L. Hou, B. Ge, B. L. Zhang, and L. Y. Wang, Existence and multiplicity of solutions for a class of anisotropic double-phase problems, Adv. Math. Phys. 2020 (2020), 8237492.
- 29J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math., vol. 1034, Springer, Berlin, 1983.
- 30K. C. Chang, Critical point theory and applications, Shanghai Scientific and Technology Press, Shanghai, 1996.
- 31Z. Liu and Z. Wang, On Clark's theorem and its applications to partially sublinear problems, Ann. Inst. H. Poincare Anal. Non Lineaire 32 (2015), 1015–1037.
10.1016/j.anihpc.2014.05.002 Google Scholar
- 32P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, vol. 65, American Mathematical Society, Providence, RI, 1986.
10.1090/cbms/065 Google Scholar
- 33O. Kovacik and J. Rakosnik, On spaces and , Czech. Math. J. 41 (1991), no. 116, 592–618.
- 34D. Edmunds and J. Rakosnik, Sobolev embeddings with variable exponent, Stud. Math. 143 (2000), 267–293.
- 35A. Crespo-Blanco and P. Winkert, Nehari manifold approach for superlinear double -phase problems with variable exponents, Ann. Mat. Pura. Appl. 203 (2024), 605–634.
10.1007/s10231-023-01375-2 Google Scholar