Volume 296, Issue 2 pp. 509-522
ORIGINAL ARTICLE

Cones of lines having high contact with general hypersurfaces and applications

Francesco Bastianelli

Corresponding Author

Francesco Bastianelli

Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, Bari, Italy

Correspondence

Francesco Bastianelli, Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy.

Email: [email protected]

Search for more papers by this author
Ciro Ciliberto

Ciro Ciliberto

Dipartimento di Matematica, Università degli Studi di Roma “Tor Vergata”, Viale della Ricerca Scientifica 1, Roma, Italy

Search for more papers by this author
Flaminio Flamini

Flaminio Flamini

Dipartimento di Matematica, Università degli Studi di Roma “Tor Vergata”, Viale della Ricerca Scientifica 1, Roma, Italy

Search for more papers by this author
Paola Supino

Paola Supino

Dipartimento di Matematica e Fisica, Università degli Studi “Roma Tre”, Largo San Leonardo Murialdo 1, Roma, Italy

Search for more papers by this author
First published: 28 November 2022

Abstract

Given a smooth hypersurface X P n + 1 $X\subset \mathbb {P}^{n+1}$ of degree d 2 $d\geqslant 2$ , we study the cones V p h P n + 1 $V^h_p\subset \mathbb {P}^{n+1}$ swept out by lines having contact order h 2 $h\geqslant 2$ at a point p X $p\in X$ . In particular, we prove that if X is general, then for any p X $p\in X$ and 2 h min { n + 1 , d } $2 \leqslant h\leqslant \min \lbrace n+1,d\rbrace$ , the cone V p h $V^h_p$ has dimension exactly n + 2 h $n+2-h$ . Moreover, when X is a very general hypersurface of degree d 2 n + 2 $d\geqslant 2n+2$ , we describe the relation between the cones V p h $V^h_p$ and the degree of irrationality of k-dimensional subvarieties of X passing through a general point of X. As an application, we give some bounds on the least degree of irrationality of k-dimensional subvarieties of X passing through a general point of X, and we prove that the connecting gonality of X satisfies d 16 n + 25 3 2 conn.gon ( X ) d 8 n + 1 + 1 2 $d-\left\lfloor \frac{\sqrt {16n+25}-3}{2}\right\rfloor \leqslant \operatorname{conn.gon}(X)\leqslant d-\left\lfloor \frac{\sqrt {8n+1}+1}{2}\right\rfloor$ .

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.