Improved Bohr inequality for harmonic mappings
Gang Liu
College of Mathematics and Statistics, Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang Normal University, Hengyang, China
Search for more papers by this authorCorresponding Author
Saminathan Ponnusamy
Department of Mathematics, Indian Institute of Technology Madras, Chennai, India
Lomonosov Moscow State University, Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
Correspondence
Saminathan Ponnusamy, Department of Mathematics, Indian Institute of Technology Madras, Chennai 600 036, India.
Email: [email protected]
Search for more papers by this authorGang Liu
College of Mathematics and Statistics, Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang Normal University, Hengyang, China
Search for more papers by this authorCorresponding Author
Saminathan Ponnusamy
Department of Mathematics, Indian Institute of Technology Madras, Chennai, India
Lomonosov Moscow State University, Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
Correspondence
Saminathan Ponnusamy, Department of Mathematics, Indian Institute of Technology Madras, Chennai 600 036, India.
Email: [email protected]
Search for more papers by this authorAbstract
In order to improve the classical Bohr inequality, we explain some refined versions for a quasi-subordination family of functions in this paper, one of which is key to build our results. Using these investigations, we establish an improved Bohr inequality with refined Bohr radius under particular conditions for a family of harmonic mappings defined in the unit disk . Along the line of extremal problems concerning the refined Bohr radius, we derive a series of results. Here, the family of harmonic mappings has the form , where , the analytic part h is bounded by 1 and that in and for some .
REFERENCES
- 1Y. Abu Muhanna, Bohr's phenomenon in subordination and bounded harmonic classes, Complex Var. Elliptic Equ. 55 (2010), no. 11, 1071–1078.
- 2Y. Abu Muhanna, R. M. Ali, Z. C. Ng, and S. F. M. Hasni, Bohr radius for subordinating families of analytic functions and bounded harmonic mappings, J. Math. Anal. Appl. 420 (2014), no. 1, 124–136.
- 3L. Aizenberg, Multidimensional analogues of Bohr's theorem on power series, Proc. Amer. Math. Soc. 128 (2000), no. 4, 1147–1155.
- 4L. Aizenberg, Generalization of Carathéodory's inequality and the Bohr radius for multidimensional power series, in: Selected Topics in Complex Analysis ( Joseph A. Ball et al., eds), Oper. Theory Adv. Appl., vol. 158, Birkhäuser, Basel, 2005, pp. 87–94.
10.1007/3-7643-7340-7_6 Google Scholar
- 5L. Aizenberg, Generalization of results about the Bohr radius for power series, Stud. Math. 180 (2007), 161–168.
- 6R. M. Ali, Y. Abu Muhanna, and S. Ponnusamy, On the Bohr inequality, in: Progress in Approximation Theory and Applicable Complex Analysis ( N. K. Govil et al., eds), Springer Optimization and Its Applications, vol. 117, 2016, pp. 269–300.
- 7R. M. Ali, R. W. Barnard, and A. Yu. Solynin, A note on the Bohr's phenomenon for power series, J. Math. Anal. Appl. 449 (2017), no. 1, 154–167.
- 8S. A. Alkhaleefah, I. R. Kayumov, and S. Ponnusamy, On the Bohr inequality with a fixed zero coefficient, Proc. Amer. Math. Soc. 147 (2019), no. 12, 5263–5274.
- 9S. A. Alkhaleefah, I. R. Kayumov, and S. Ponnusamy, Bohr–Rogosinski inequalities for bounded analytic functions, Lobachevskii J. Math. 41 (2020), no. 11, 2110–2119.
- 10R. Balasubramanian, B. Calado, and H. Queffélec, The Bohr inequality for ordinary Dirichlet series, Stud. Math. 175 (2006), no. 3, 285–304.
- 11C. Bénéteau, A. Dahlner, and D. Khavinson, Remarks on the Bohr phenomenon, Comput. Methods Funct. Theory 4 (2004), no. 1, 1–19.
10.1007/BF03321051 Google Scholar
- 12B. Bhowmik and N. Das, Bohr phenomenon for subordinating families of certain univalent functions, J. Math. Anal. Appl. 462 (2018), no. 2, 1087-1098.
- 13B. Bhowmik and N. Das, Bohr phenomenon for locally univalent functions and logarithmic power series, Comput. Methods Funct. Theory 19 (2019), no. 4, 729–745.
- 14O. Blasco, The Bohr radius of a Banach space, in: Vector measure, integration and related topics, Oper. Theory Adv. Appl. vol. 201, Springer, New York, 2010, pp. 59–64.
- 15H. P. Boas and D. Khavinson, Bohr's power series theorem in several variables, Proc. Amer. Math. Soc. 125 (1997), no. 10, 2975–2979.
- 16H. Bohr, A theorem concerning power series, Proc. Lond. Math. Soc. (3) 13 (1914), no. 2, 1–5.
10.1112/plms/s2-13.1.1 Google Scholar
- 17E. Bombieri, Sopra un teorema di H. Bohr e G. Ricci sulle funzioni maggioranti delle serie di potenze, Boll. Unione Mat. Ital. 17 (1962), 276–282.
- 18F. Carlson, Sur les coefficients d'une fonction bornée dans le cercle unité (French), Ark. Mat. Astr. Fys. 27A (1940), no. 1, 8 pp.
- 19A. Defant and L. Frerick, A logarithmic lower bound for multi-dimensional Bohr radii, Israel J. Math. 152 (2006), no. 1, 17–28.
- 20A. Defant, L. Frerick, J. Ortega-Cerdà, M. Ounaïes, and K. Seip, The Bohnenblust-Hille inequality for homogenous polynomials is hypercontractive, Ann. of Math. 174 (2011), no. 2, 512–517.
- 21J. G. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. 9 (1984), 3–25.
- 22P. B. Djakov and M. S. Ramanujan, A remark on Bohr's theorems and its generalizations, J. Anal. 8 (2000), 65–77.
- 23P. Duren, Harmonic mappings in the plane, Cambridge University Press, New York, 2004.
10.1017/CBO9780511546600 Google Scholar
- 24S. Evdoridis, S. Ponnusamy, and A. Rasila, Improved Bohr inequality for locally univalent harmonic mappings, Indag. Math. (N. S.) 30 (2019), 201–213.
- 25S. R. Garcia, J. Mashreghi, and W. T. Ross, Finite Blaschke products and their connections, Springer, Cham, 2018.
10.1007/978-3-319-78247-8 Google Scholar
- 26H. Hamada and T. Honda, Some generalizations of Bohr's theorem, Math. Methods Appl. Sci. 35 (2012), no. 17, 2031–2035.
- 27A. Ismagilov, I. R. Kayumov, and S. Ponnusamy, Sharp Bohr type inequality, J. Math. Anal. Appl. 489 (2020), no. 1, 124-147.
- 28I. R. Kayumov, D. M. Khammatova, and S. Ponnusamy, On the Bohr inequality for the Cesáaro operator, C. R. Math. Acad. Sci. Paris 358 (2020), no. 5, 615–620.
- 29I. R. Kayumov and S. Ponnusamy, Bohr inequality for odd analytic functions, Comput. Methods Funct. Theory 17 (2017), 679–688.
- 30I. R. Kayumov and S. Ponnusamy, Bohr's inequalities for the analytic functions with lacunary series and harmonic functions, J. Math. Anal. Appl. 465 (2018), 857–871.
- 31I. R. Kayumov and S. Ponnusamy, Improved version of Bohr's inequality, C. R. Math. Acad. Sci. Paris 356 (2018), no. 3, 272–277.
- 32I. R. Kayumov and S. Ponnusamy, On a powered Bohr inequality, Ann. Acad. Sci. Fenn. Ser. A I Math. 44 (2019), 301–310.
10.5186/aasfm.2019.4416 Google Scholar
- 33I. R. Kayumov and S. Ponnusamy, Bohr–Rogosinski radius for analytic functions. arXiv:1708.05585v1
- 34I. R. Kayumov, S. Ponnusamy, and N. Shakirov, Bohr radius for locally univalent harmonic mappings, Math. Nachr. 291 (2018), 1757–1768.
- 35S. Kumar and S. K. Sahoo, Bohr inequalities for certain integral operators, Mediterr. J. Math. 18 (2021), 268, https://doi.org/10.1007/s00009-021-01891-6
- 36E. Landau and D. Gaier, Darstellung und Begrüundung einiger neuerer Ergebnisse der Funktionentheorie, Springer, Berlin, 1986.
10.1007/978-3-642-71438-2 Google Scholar
- 37G. Liu, Z. H. Liu, and S. Ponnusamy, Refined Bohr inequality for bounded analytic functions, Bull. Sci. Math. 173 (2021), 103054, https://doi.org/10.1016/j.bulsci.2021.103054
- 38G. Liu and S. Ponnusamy, On harmonic ν-Bloch and ν-Bloch-type mappings, Results Math. 73 (2018), no. 3, 73–90.
- 39M. S. Liu and S. Ponnusamy, Multidimensional analogues of refined Bohr's inequality, Proc. Amer. Math. Soc. 149 (2021), no. 3, 2133–2146.
- 40M. S. Liu, S. Ponnusamy, and J. Wang, Bohr's phenomenon for the classes of quasi-subordination and K-quasiregular harmonic mappings, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 3, 115.
10.1007/s13398-020-00844-0 Google Scholar
- 41M. S. Liu, Y. M. Shang, and J. F. Xu, Bohr-type inequalities of analytic functions, J. Inequal. Appl. 345 (2018), 13 pp.
- 42Z. H. Liu and S. Ponnusamy, Bohr radius for subordination and K-quasiconformal harmonic mappings, Bull. Malays. Math. Sci. Soc. 42 (2019), 2151–2168.
- 43V. I. Paulsen, G. Popescu, and D. Singh, On Bohr's inequality, Proc. Lond. Math. Soc. (3) 85 (2002), no. 2, 493–512.
- 44S. Ponnusamy and A. Rasila, Planar harmonic and quasiregular mappings, Topics in modern function theory: Chapter in CMFT, RMS Lecture Notes Series No. 19 (2013), 267–333.
- 45V. I. Paulsen and D. Singh, Bohr's inequality for uniform algebras, Proc. Amer. Math. Soc. 132 (2004), no. 12, 3577–3579.
- 46V. I. Paulsen and D. Singh, Extensions of Bohr's inequality, Bull. Lond. Math. Soc. 38 (2006), no. 6, 991–999.
- 47S. Ponnusamy, R. Vijayakumar, and K.-J. Wirths, New inequalities for the coefficients of unimodular bounded functions, Results Math. 75 (2020), 107.
- 48S. Ponnusamy, R. Vijayakumar and K.-J. Wirths, Improved Bohr's phenomenon in quasi-subordination classes, J. Math. Anal. Appl. 506 (2022), 125645, https://doi.org/10.1016/j.jmaa.2021.125645
- 49S.Ponnusamy and K.-J. Wirths, Bohr type inequalities for functions with a multiple zero at the origin, Comput. Methods Funct. Theory 20 (2020), 559–570.
- 50W. Rogosinski, Über Bildschranken bei Potenzreihen und ihren Abschnitten, Math. Z. 17 (1923), 260–276.
10.1007/BF01504347 Google Scholar
- 51I. Schur and G. Szegö, Über die Abschnitte einer im Einheitskreise beschränkten Potenzreihe, Sitz.-Ber. Preuss. Acad. Wiss. Berlin Phys.-Math. Kl. (1925), 545–560.
- 52S. Sidon, Über einen Satz von Herrn Bohr, Math. Z. 26 (1927), 731–732.
10.1007/BF01475487 Google Scholar
- 53M. Tomic, Sur un theoreme de H. Bohr, Math. Scand. 11 (1962), 103–106.
10.7146/math.scand.a-10653 Google Scholar