Cauchy–Szegö commutators on weighted Morrey spaces
Zunwei Fu
Department of Mathematics, Linyi University, Shandong, P. R. China
Search for more papers by this authorRuming Gong
Department of Mathematics, Guangzhou University, Guangzhou, P. R. China
Search for more papers by this authorElodie Pozzi
Department of Mathematics and Statistics, Saint Louis University, St Louis, Missouri, USA
Search for more papers by this authorCorresponding Author
Qingyan Wu
Department of Mathematics, Linyi University, Shandong, P. R. China
Correspondence
Qingyan Wu, Department of Mathematics, Linyi University, Shandong, 276005, P. R. China.
Email: [email protected]
Search for more papers by this authorZunwei Fu
Department of Mathematics, Linyi University, Shandong, P. R. China
Search for more papers by this authorRuming Gong
Department of Mathematics, Guangzhou University, Guangzhou, P. R. China
Search for more papers by this authorElodie Pozzi
Department of Mathematics and Statistics, Saint Louis University, St Louis, Missouri, USA
Search for more papers by this authorCorresponding Author
Qingyan Wu
Department of Mathematics, Linyi University, Shandong, P. R. China
Correspondence
Qingyan Wu, Department of Mathematics, Linyi University, Shandong, 276005, P. R. China.
Email: [email protected]
Search for more papers by this authorAbstract
In the setting of quaternionic Heisenberg group , we characterize the boundedness and compactness of commutator for the Cauchy–Szegö operator on the weighted Morrey space with , , and . More precisely, we prove that is bounded on if and only if . And is compact on if and only if .
REFERENCES
- 1S. Alesker, Non-commmutative linear algebra and plurisubharmonic functions of quaternionic variables, Bull. Sci. Math. 127 (2003), no. 1, 1–35.
- 2H. Arai and T. Mizuhara, Morrey spaces on spaces of homogeneous type and estimates for and the Cauchy-Szegö projection, Math. Nachr. 185 (1997), 5–20.
- 3R. E. Castillo, J. C. Ramos Fernández, and E. Trousselot, Functions of bounded mean oscillation, Proyecciones 27 (2008), 163–177.
- 4D. C. Chang, X. T. Duong, J. Li, W. Wang, and Q. Y. Wu, An explicit formula of Cauchy–Szegö kernel for quaternionic Siegel upper half space and applications, Indiana Univ. Math. J. 70 (2021), no. 6, 2451–2477.
- 5D. C. Chang and I. Markina, Quaternion H-type group and differential operator , Sci. China Ser. A 51 (2008), no. 4, 523–540.
- 6D. C. Chang, I. Markina, and W. Wang, On the Cauchy–Szegö kernel for quaternion Siegel upper half-space, Complex Anal. Oper. Theory 7 (2013), no. 5, 1623–1654.
- 7Y. Chen, Y. Ding, and X. Wang, Compactness of commutators for singular integrals on Morrey spaces, Canad. J. Math. 64 (2012), 257–281.
- 8P. Chen, X. T. Duong, J. Li, and Q. Y. Wu, Compactness of Riesz transform commutator on stratified Lie groups, J. Funct. Anal. 277 (2019), no. 6, 1639–1676.
- 9W. L. Chow, Über Systeme von linearen partiellen differentialgleichungen erster ordnung, Math. Ann. 117 (1939), 98–105.
- 10M. Christ, H. Liu, and A. Zhang, Sharp Hardy-Littlewood-Sobolev inequalities on quaternionic Heisenberg groups, Nonlinear Anal. 130 (2016), 361–395.
- 11F. Colombo, I. Sabadini, F. Sommen, and D. Struppa, Analysis of Dirac systems and computational algebra, Prog. Math. Phys., vol. 39, Birkhäuser, Boston, MA, 2004.
10.1007/978-0-8176-8166-1 Google Scholar
- 12X. Duong, R. Gong, J. Li, M. J. Kuffner, B. Wick, and D. Yang, Two weight commutators on spaces of homogeneous type and applications, J. Geom. Anal. 31 (2021), 980–1038.
- 13G. Di Fazio and M. A. Ragusa, Commutators and Morrey spaces, Boll. Un. Mat. Ital. A 5 (1991), no. 7, 323–332.
- 14G. B. Folland and E. M. Stein, Hardy spaces on homogeneous groups, Math. Notes, vol. 28, Princeton University Press, Princeton, NJ, University of Tokyo Press, Tokyo, 1982.
- 15K. P. Ho, Characterizations of BMO spaces by weights and p-convexity, Hiroshima Math. J. 41 (2011), 153–165.
- 16G. Hu, X. Shi, and Q. Zhang, Weighted norm inequalities for the maximal singular integral operators on spaces of homogeneous type, J. Math. Anal. Appl. 336 (2007), no. 1, 1–17.
- 17S. Ivanov, I. Minchev, and D. Vassilev, Quaternionic contact Einstein structures and the quaternionic contact Yamabe problem, Mem. Amer. Math. Soc. vol. 231, no. 1086, Amer. Math. Soc., Providence, RI, 2014.
- 18S. Ivanov and D. Vassilev, Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.
10.1142/7647 Google Scholar
- 19V. Kokilashvili and A. Meskhi, The boundedness of sublinear operators in weighted Morrey spaces defined on spaces of homogeneous type, Function Spaces and Inequalities, in: P. Jain, H. J. Schmeisser (eds), Springer, Singapore, 2017, 193–211.
10.1007/978-981-10-6119-6_9 Google Scholar
- 20Y. Komori and S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr. 282 (2009), 219–231.
- 21A. Korányi and H. M. Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math. 80 (1985), 309–338.
- 22A. Korányi and H. M. Reimann, Foundations for the theory of quasiconformal mappings on the Heisenberg group, Adv. Math. 111 (1995), no. 1, 1–87.
- 23M. Kronz, Some function spaces on spaces of homogeneous type, Manuscripta Math. 106 (2001), no. 2, 219–248.
- 24S. Mao, L. Sun, and H. Wu, Boundedness and compactness for commutators of bilinear Fourier multipliers, Acta Math. Sinica (Chin. Ser.) 59 (2016), 317–334.
- 25P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989), no. 1, 1–60.
- 26Y. Shi and W. Wang, On conformal qc geometry, spherical qc manifolds and convex cocompact subgroups of , Ann. Global Anal. Geom. 49 (2016), no. 3, 271–307.
- 27Y. Shi and W. Wang, The Szegö kernel for k-CF functions on the quaternionic Heisenberg group, Appl. Anal. 14 (2017), 2474–2492.
- 28J. Tao, Da. Yang, and Do. Yang, Boundedness and compactness characterizations of Cauchy integral commutators on Morrey spaces, Math. Methods Appl. Sci. 42 (2019), 1631–1651.
- 29J. Tao, Da. Yang, and Do. Yang, Beurling-Ahlfors commutators on weighted Morrey spaces and applications to Beltrami equations, Potential Anal. 53 (2020), 1467–1491.
- 30D. Wan and W. Wang, On quaternionic Monge-Ampère operator, closed positive currents and Lelong-Jensen type formula on the quaternionic space, Bull. Sci. Math. 141 (2017), 267–311.
- 31W. Wang, The tangential Cauchy–Fueter complex on the quaternionic Heisenberg group, J. Geom. Phys., 61 (2011), 363–380.
- 32W. Wang, The Neumann problem for the k-Cauchy-Fueter complex over k-pseudoconvex domains in and the L2 estimate, J. Geom. Anal. 29 (2019), 1233–1258.