Harmonic Gauss maps of submanifolds of arbitrary codimension of the Euclidean space and sphere and some applications
Corresponding Author
Daniel Bustos
Escuela de Ciencias Básicas, Tecnología e Ingeniería, Universidad Nacional Abierta y a Distancia, Ibagué, Colombia
Correspondence
Daniel Bustos, Escuela de Ciencias Básicas, Tecnología e Ingeniería, Universidad Nacional Abierta y a Distancia, Ibagué, Colombia.
Email: [email protected]
Search for more papers by this authorJaime Ripoll
Instituto de Matemática e Estatística, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Search for more papers by this authorCorresponding Author
Daniel Bustos
Escuela de Ciencias Básicas, Tecnología e Ingeniería, Universidad Nacional Abierta y a Distancia, Ibagué, Colombia
Correspondence
Daniel Bustos, Escuela de Ciencias Básicas, Tecnología e Ingeniería, Universidad Nacional Abierta y a Distancia, Ibagué, Colombia.
Email: [email protected]
Search for more papers by this authorJaime Ripoll
Instituto de Matemática e Estatística, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Search for more papers by this authorAbstract
It is proven results about existence and nonexistence of unit normal sections of submanifolds of the Euclidean space and sphere, which associated Gauss maps, are harmonic. Some applications to constant mean curvature hypersurfaces of the sphere and to isoparametric submanifolds are obtained too.
REFERENCES
- 1H. Alencar and M. do Carmo, Hypersurfaces with constant mean curvature in spheres, Proc. Amer. Math. Soc. 120 (1994), no. 4, 1223–1229.
- 2M. Alexandrino and R. Bettiol, Lie groups and geometric aspects of isometric actions, Springer, Berlin, 2015.
10.1007/978-3-319-16613-1 Google Scholar
- 3J. Baez, The octonions, Bull. Amer. Math. Soc. 39 (2001), no. 2, 145–205.
- 4F. Bittencourt, D. Bustos, E. Figueiredo, P. Fusieger, and J. Ripoll, Minimal isoparametric submanifolds of and octonionic eigenmaps, Differ. Geom. Appl. 63 (2019), 137–144.
- 5F. Bittencourt, E. Figueiredo, E. Longa, and J. Ripoll, Gauss map and the topology of constant mean curvature hypersurfaces of and , Manuscripta Math. 163 (2020), 279–290.
- 6F. Bittencourt and J. Ripoll, Gauss map harmonicity and mean curvature of a hypersurface in a homogeneous manifold, Pacific J. Math. 224 (2006), no. 1, 45–63.
- 7A. A. Borisenko and Yu. A. Nikolaevskii, Grassmann manifolds and the Grassmann image of submanifolds, Russian Math. Surveys 46 (1991), no. 2, 45–94.
- 8B. Y. Chen, On the surface with parallel mean curvature vector, Indiana Univ. Math. J. 22 (1973), no. 7, 655–666.
- 9B. Y. Chen, Surfaces with parallel normalized mean curvature vector, Monat. Math. 90 (1980), 185–194.
- 10X. P. Chen, Harmonic maps and Gaussian maps, Chin. Ann. Math. 4A (1983), no. 4, 449–456.
- 11S. Chern, M. do Carmo, and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional analysis and related fields, Proc. Conf. in Honor of Marshall Stone, Springer, Berlin, 1970.
- 12T. E. Cecil and P. J. Ryan, Geometry of hypersurfaces. Springer Monographs in Mathematics. Springer, New York, 2015.
10.1007/978-1-4939-3246-7 Google Scholar
- 13M. Dajczer and R. Tojeiro, Submanifold theory beyond an introduction, Springer, New York, 2019.
10.1007/978-1-4939-9644-5 Google Scholar
- 14B. Daniel, The Gauss map of minimal surfaces in the Heisenberg group, Int. Math. Res. Not. 2011 (2011), no. 3, 674–695.
- 15B. Daniel, I. Fernández, and P. Mira, The Gauss map of surfaces in , Calc. Var. 52 (2015), 507–528.
- 16J. Eells and L. Lemaire, Selected topics in harmonic maps, C.B.M.S. Regional Conf. Series, vol. 50, Amer. Math. Soc., Providence, RI, 1983.
10.1090/cbms/050 Google Scholar
- 17N. Espírito-Santo, S. Fornari, K. Frensel, and J. Ripoll, Constant mean curvature hypersurfaces in a Lie group with a bi-invariant metric, Manuscripta Math. 111 (2003), 459–470.
- 18S. Fornari and J. Ripoll, Killing fields, mean curvature, translations Maps, Ilinois J. of Math. 48 (2004), no. 4, 1385–1403.
- 19I. Fernández and P. Mira, Harmonic maps and constant mean curvature surfaces in , Am. J. Math. 129 (2007), no. 4, 1145–1181.
- 20E. De Giorgi, Una estensione del teorema di Bernstein, Ann. Scuola Norm. Sup. Pisa, Série 3 19 (1965), no. 1, 79–85.
- 21F. Hélein, Constant mean curvature surfaces, harmonic maps and integrable systems, Lectures in Mathematics, ETH, Zurich, 2001.
10.1007/978-3-0348-8330-6 Google Scholar
- 22D. A. Hoffman, R. Osserman, and R. Schoen, On the Gauss map of complete surfaces of constant mean curvature in and , Comment. Math. Helv. 57 (1982), no. 1, 519–531.
- 23T. Ishihara, The harmonic Gauss maps in generalized sense, J. London Math. Soc. 26 (1982), 104–112.
- 24B. Lawson and Y. Hsiang, Minimal submanifolds of low cohomogeneity, J. Differential Geometry 5 (1971), no. 1-2, 1–38.
- 25M. Leite and J. Ripoll, On quadratic differentials and twisted normal maps of surfaces in and , Results Math. 60 (2011), 351–360.
- 26L. Masal'tsev, A Version of the Ruh–Vilms theorem for surfaces of constant mean curvature in , Math. Notes 73 (2003), 85–96.
- 27M. Obata, The Gauss map of immersions of Riemannian manifolds in spaces of constant curvature, J. Differential Geom. 2 (1968) 217–223.
10.4310/jdg/1214428258 Google Scholar
- 28R. Palais and C. Terng, Critical point theory and submanifold geometry, Lecture Notes, vol. 1353, Springer, Berlin, 1988.
10.1007/BFb0087442 Google Scholar
- 29Q. Chi, Isoparametric hypersurfaces with four principal curvatures, IV, J. Differential Geom. 115 (2020), no. 2, 225–301.
- 30A. Ramos and J. Ripoll, An extension of Ruh-Vilms theorem to hypersurfaces in symmetric spaces and some applications, Trans. Amer. Math. Soc. 368 (2015), no. 7, 4731–4749.
- 31E. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1979), 569–573.
10.1090/S0002-9947-1970-0259768-5 Google Scholar
- 32J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968), no. 2, 62–105.
- 33T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380–385.
- 34C. Terng, Isoparametric submanifolds and their Coxeter groups, J. Differential Geometry 21 (1985), no. 1, 79–107.
- 35H. Urakawa, Calculus of variations and harmonic maps, Translations of Mathematical Monographs, vol. 132, AMS, Providence, Rhode Island, 1993.
- 36S. T. Yau, Submanifolds with constant mean curvature I, Amer. J. Math. 96 (1974), 346–366.