Article
Full Access
On the Cogeneration of Algebras
Jiří Adámek,
Jiří Adámek
Faculty of Electrical Enginnering, Technical University Prague, Suchbátarova 2, 166 27 Praha, 6 Czechoslovakia
Search for more papers by this authorJiří Adámek,
Jiří Adámek
Faculty of Electrical Enginnering, Technical University Prague, Suchbátarova 2, 166 27 Praha, 6 Czechoslovakia
Search for more papers by this author
References
- 1 J. Adámek, Free algebras and automata realizations in the language of categories, Comment. Math. Univ. Carolinae 15, 589–602 (1974).
- 2 J. Adámek, Cogeneration and minimal realization, Comment. Math. Univ. Carolinae 17, 609–614 (1976).
- 3
J. Adámek,
Realization theory for automata in categories,
J. Pure Appl. Algebra
9, 281–296
(1977).
10.1016/0022-4049(77)90071-8 Google Scholar
- 4 B. D. O. Anderson, M. A. Arbib and E. G. Manes, Foundations of system theory: finitary and infinitary conditions, COINS Technical Report 74 B-2, Univ. of Massachsetts, Amherst 1974.
- 5
M. A. Arbib and
E. G. Manes,
A categorist's view of automata and systems,
Lecture Notes in Computer Science 25,
51–64,
Springer
1975.
10.1007/3-540-07142-3_61 Google Scholar
- 6 M. Barr, Coequalizers and free triples, Math. Z., 116, 307–322 (1970).
- 7
M. Barr,
Right exact functors,
J. Pure Appl. Algebra
4, 1–8
(1974).
10.1016/0022-4049(74)90025-5 Google Scholar
- 8 G. Grätzer, A characterization of the characteristics of an equasional class, A–380 Notices Amer. Math. Soc. 22, (1975).
- 9 H. Herrlich and G. E. Strecker, Category Theory, Allyn and Bacon, Boston 1973.
- 10
V. Koubek and
J. Reiterman,
Machines in a category, input processes,
Lecture Notes in Computer Science 32,
280–286,
Springer
1975.
10.1007/3-540-07389-2_209 Google Scholar
- 11 V. Trnková, On minimal realizations of behavior maps in categorial automata theory, Comment, Math. Univ. Carolinae 15, 555–566 (1974).
- 12 V. Trnková, J. Adámek, V. Koubek and J. Reiterman, Free algebras, input processes and free monads, Comment. Math. Univ. Carolinae 16, 339–359 (1975).
- 13 J. Slominski, A representation of the category of algebras over different monads by the category of algebras over one suitable monad in the category of pointed monads, a preprint.
- 14 J. Slominski, On the greatest congruence relation contained in an equivalence relation and its applications to the algebraic theory of machines, Coll. Math. 29, 31–43 (1974).
- 15 T. Sturm, Einige Charakterisationen von Ketten, Czech. Math. J. 23, 375–391 (1973).
- 16 H. Andréka, S. Horváth and I. Neméthi, Notes on maximal congruence relations, automata and related topics, Acta Cybernetica 2, 71–88 (1973/76).