Investigation of eATRP for a Carboxylic-Acid-Functionalized Ionic Liquid Monomer
Weiling Hu
School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715 P. R. China
Search for more papers by this authorCorresponding Author
Lan Xu
School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715 P. R. China
E-mail: [email protected]
Search for more papers by this authorWeiling Hu
School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715 P. R. China
Search for more papers by this authorCorresponding Author
Lan Xu
School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715 P. R. China
Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715 P. R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
Electrochemically mediated atom transfer radical polymerization (eATRP) is a promising technique for precise control over polymer molecular weights (MWs), molecular weight distribution (Đ), and complex architectures under low concentrations of copper-based ATRP catalysts. Herein, eATRP of ionic liquid monomer (ILM), 1-vinyl-3-propionate imidazolium tetrafluoroborate (VPI+BF4−), containing carboxylic acid groups is inquired in aqueous media. In the polymerization process of water-soluble VPI+BF4−, the protonation and dissociation of catalysts have great influence on the polymerization reaction. Various polymerization parameters, including applied potential (Eapp), pH, degree of polymerization (DP) (from 100 to 300), and the catalyst concentration (from 5 × 10−4 to 1.5 × 10−3 m) are examined. Under certain polymerization conditions, poly(ionic liquids) (PILs) with a well-controlled MWs and narrow Đ are obtained. The controlled/living property of the polymerization process is reflected by the linear first-order kinetics, linear increase of MWs with monomer conversion, and the probability of complete reactivation of the polymerization by repetitively altering the Eapp values. This work provides a new perspective for the precise synthesis of PIL-based block copolymers with adjustable properties; meanwhile, the eATRP of monomer containing carboxylic acid groups is expected to develop functional materials with pH responsiveness and biocompatibility.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
macp202000348-sup-0001-SuppMat.pdf1,017.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Detrembleur, A. Debuigne, M. Hurtgen, C. Jerome, J. Pinaud, M. Fevre, P. Coupillaud, J. Vignolle, D. Taton, Macromolecules 2011, 44, 6397.
- 2J. Zhao, F. Yan, Z. Chen, H. Diao, F. Chu, S. Yu, J. Lu, J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 746.
- 3H. He, M. Zhong, B. Adzima, D. Luebke, H. Nulwala, K. Matyjaszewski, J. Am. Chem. Soc. 2013, 135, 4227.
- 4B. J. Adzima, S. C. Taylor, H. He, D. R. Luebke, K. Matyjaszewski, H. B. Nulwala, J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 417.
- 5R. L. Weber, Y. S. Ye, A. L. Schmitt, S. M. Banik, Y. A. Elabd, M. K. Mahanthappa, Macromolecules 2011, 44, 5727.
- 6B. S. Aitken, C. F. Buitrago, J. D. Heffley, M. Lee, H. W. Gibson, K. I. Winey, K. B. Wagener, Macromolecules 2012, 45, 681.
- 7I. Abdelhedi-Miladi, M. M. Obadia, I. Allaoua, A. Serghei, H. Ben Romdhane, E. Drockenmuller, Macromol. Chem. Phys. 2014, 215, 2229.
- 8J. Y. Yuan, M. Antonietti, Polymer 2011, 52, 1469.
- 9Y. S. Vygodskii, A. S. Shaplov, E. I. Lozinskaya, K. A. Lyssenko, D. G. Golovanov, I. A. Malyshkina, N. D. Gavrilova, M. R. Buchmeiser, Macromol. Chem. Phys. 2008, 209, 40.
- 10H. He, D. Luebke, H. Nuwala, K. Matyjaszewski, Macromolecules 2014, 47, 6601.
- 11C. M. Stancik, A. R. Lavoie, J. Schutz, P. A. Achurra, P. Lindner, A. P. Gast, R. M. Waymouth, Langmuir 2004, 20, 596.
- 12H. Chen, J.-H. Choi, D. Salas-de la Cruz, K. I. Winey, Y. A. Elabd, Macromolecules 2009, 42, 4809.
- 13K. Matsumoto, B. Talukdar, T. Endo, Polym. Bull. 2011, 66, 199.
- 14D. Cordella, A. Kermagoret, A. Debuigne, C. Jérôme, D. Mecerreyes, M. Isik, D. Taton, C. Detrembleur, Macromolecules 2015, 48, 5230.
- 15S. E. LehmanJr., K. B. Wagener, L. Saunders Baugh, S. P. Rucker, D. N. Schulz, M. Varma-Nair, E. Berluche, Macromolecules 2007, 40, 2643.
- 16D. Burtscher, C. Lexer, K. Mereiter, R. Winde, R. Karch, C. Slugovc, J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 4630.
- 17S. Monfette, D. E. Fogg, Chem. Rev. 2009, 109, 3783.
- 18H. D. Tang, J. B. Tang, S. J. Ding, M. Radosz, Y. Q. Shen, J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 1432.
- 19H. He, M. Zhong, D. Luebke, H. Nulwala, K. Matyjaszewski, J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 2175.
- 20H. Mori, M. Yahagi, T. Endo, Macromolecules 2009, 42, 8082.
- 21M. Destarac, Polym. Rev. 2011, 51, 163.
- 22J. Yuan, D. Mecerreyes, M. Antonietti, Prog. Polym. Sci. 2013, 38, 1009.
- 23F. di Lena, K. Matyjaszewski, Prog. Polym. Sci. 2010, 35, 959.
- 24K. Matyjaszewski, J. H. Xia, Chem. Rev. 2001, 101, 2921.
- 25A. J. D. Magenau, N. Bortolamei, E. Frick, S. Park, A. Gennaro, K. Matyjaszewski, Macromolecules 2013, 46, 4346.
- 26A. J. D. Magenau, N. C. Strandwitz, A. Gennaro, K. Matyjaszewski, Science 2011, 332, 81.
- 27N. Bortolamei, A. A. Isse, A. J. Magenau, A. Gennaro, K. Matyjaszewski, Angew. Chem., Int. Ed. 2011, 50, 11391.
- 28S. Park, P. Chmielarz, A. Gennaro, K. Matyjaszewski, Angew. Chem., Int. Ed. 2015, 54, 2388.
- 29P. Chmielarz, M. Fantin, S. Park, A. A. Isse, A. Gennaro, A. J. D. Magenau, A. Sobkowiak, K. Matyjaszewski, Prog. Polym. Sci. 2017, 69, 47.
- 30S. Dadashi-Silab, S. Doran, Y. Yagci, Chem. Rev. 2016, 116, 10212.
- 31X. C. Pan, M. A. Tasdelen, J. Laun, T. Junkers, Y. Yagci, K. Matyjaszewski, Prog. Polym. Sci. 2016, 62, 73.
- 32M. Chen, M. Zhong, J. A. Johnson, Chem. Rev. 2016, 116, 10167.
- 33H. Mohapatra, M. Kleiman, A. P. Esser-Kahn, Nat. Chem. 2017, 9, 135.
- 34Z. Wang, X. Pan, L. Li, M. Fantin, J. Yan, Z. Wang, Z. Wang, H. Xia, K. Matyjaszewski, Macromolecules 2017, 50, 7940.
- 35Z. Wang, X. Pan, J. Yan, S. Dadashi-Silab, G. Xie, J. Zhang, Z. Wang, H. Xia, K. Matyjaszewski, ACS Macro Lett. 2017, 6, 546.
- 36Z. Wang, Z. Wang, X. Pan, L. Fu, S. Lathwal, M. Olszewski, J. Yan, A. E. Enciso, Z. Wang, H. Xia, K. Matyjaszewski, ACS Macro Lett. 2018, 7, 275.
- 37X. Pan, M. Fantin, F. Yuan, K. Matyjaszewski, Chem. Soc. Rev. 2018, 47, 5457.
- 38P. Kwiatkowski, J. Jurczak, J. Pietrasik, W. Jakubowski, L. Mueller, K. Matyjaszewski, Macromolecules 2008, 41, 1067.
- 39B. P. Fors, C. J. Hawker, Angew. Chem., Int. Ed. 2012, 51, 8850.
- 40M. Fantin, A. A. Isse, A. Venzo, A. Gennaro, K. Matyjaszewski, J. Am. Chem. Soc. 2016, 138, 7216.
- 41P. Chmielarz, S. Park, A. Simakova, K. Matyjaszewski, Polymer 2015, 60, 302.
- 42P. Chmielarz, A. Sobkowiak, J. Polym. Res. 2017, 24, 77.
- 43P. Chmielarz, P. Krys, S. Park, K. Matyjaszewski, Polymer 2015, 71, 143.
- 44P. Chmielarz, Polymer 2016, 102, 192.
- 45S. Park, H. Y. Cho, K. B. Wegner, J. Burdynska, A. J. D. Magenau, H.-j. Paik, S. Jurga, K. Matyjaszewski, Macromolecules 2013, 46, 5856.
- 46H. Gao, K. Matyjaszewski, Macromolecules 2006, 39, 4960.
- 47L. T. Strover, J. Malmstroem, L. A. Stubbing, M. A. Brimble, J. Travas-Sejdic, Electrochim. Acta 2016, 188, 57.
- 48D. Li, X. Niu, S. Yang, Y. Chen, F. Ran, Sep. Purif. Technol. 2018, 206, 166.
- 49M. Fantin, A. A. Isse, A. Gennaro, K. Matyjaszewski, Macromolecules 2015, 48, 6862.
- 50M. Fantin, A. A. Isse, K. Matyjaszewski, A. Gennaro, Macromolecules 2017, 50, 2696.
- 51K. M. N. V. Tsarevsky, Chem. Rev. 2007, 107, 2270.
- 52A. C. G. Coullerez, E. Malmstrçm, M. Jonsson, J. Phys. Chem. A 2004, 108, 7129.
- 53T. P. N. V. Tsarevsky, K. Matyjaszewski, Macromolecules 2004, 37, 9768.
- 54F. De Bon, M. Fantin, A. A. Isse, A. Gennaro, Polym. Chem. 2018, 9, 646.
- 55K. Matyjaszewski, Isr. J. Chem. 2012, 52, 206.
- 56D. Konkolewicz, P. Krys, J. R. Gois, P. V. Mendonca, M. J. Zhong, Y. Wang, A. Gennaro, A. A. Isse, M. Fantin, K. Matyjaszewski, Macromolecules 2014, 47, 560.
- 57F. Lorandi, M. Fantin, A. A. Isse, A. Gennaro, Polymer 2015, 72, 238.
- 58A. J. D. Magenau, Y. Kwak, K. Matyjaszewski, Macromolecules 2010, 43, 9682.
- 59X. C. Pan, N. Malhotra, A. Simakova, Z. Y. Wang, D. Konkolewicz, K. Matyjaszewski, J. Am. Chem. Soc. 2015, 137, 15430.
- 60A. Simakova, S. E. Averick, D. Konkolewicz, K. Matyjaszewski, Macromolecules 2012, 45, 6371.
- 61X. Feng, J. Yi, W. Zhang, Y. Niu, L. Xu, J. Appl. Polym. Sci. 2019, 136, 48051.
- 62S. Ding, H. Tang, M. Radosz, Y. Shen, J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 5794.
- 63Y. Leng, J. Wu, P. Jiang, J. Wang, Catal. Sci. Technol. 2014, 4, 1293.
- 64K. N. Jayachandran, A. Takacs-Cox, D. E. Brooks, Macromolecules 2002, 35, 4247.