Generating Triple Crystalline Superstructures in Melt Miscible PEO-b-PCL-b-PLLA Triblock Terpolymers by Controlling Thermal History and Sequential Crystallization
Jordana K. Palacios
POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
Search for more papers by this authorGuoming Liu
Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorDujin Wang
Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Nikos Hadjichristidis
King Abdullah University of Science and Technology, Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal, 23955 Saudi Arabia
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Alejandro J. Müller
POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
Ikerbasque, Basque Foundation for Science, Bilbao, 48013 Spain
E-mail: [email protected], [email protected]Search for more papers by this authorJordana K. Palacios
POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
Search for more papers by this authorGuoming Liu
Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorDujin Wang
Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Nikos Hadjichristidis
King Abdullah University of Science and Technology, Physical Sciences and Engineering Division, KAUST Catalysis Center, Thuwal, 23955 Saudi Arabia
E-mail: [email protected], [email protected]Search for more papers by this authorCorresponding Author
Alejandro J. Müller
POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
Ikerbasque, Basque Foundation for Science, Bilbao, 48013 Spain
E-mail: [email protected], [email protected]Search for more papers by this authorDedicated to the memory of Prof. Reimund Stadler
Abstract
The morphology, crystallization behavior, and properties of multi-crystalline polymer systems based on triple crystalline biodegradable PEO-b-PCL-b-PLLA triblock terpolymers are reviewed. The triblock terpolymers, with increasing poly(l-lactide) (PLLA) content, exhibit a triple crystalline nature. Upon cooling from melt, the PLLA block crystallizes first and templates the spherulitic morphology of the terpolymer. Then, the poly(ε-caprolactone) (PCL) block crystalizes and, finally, the poly(ethylene oxide) (PEO) block. These triblock terpolymers are melt miscible according to small angle X-ray scattering (SAXS) results. Thus, the crystallization of PCL and PEO blocks takes place within the interlamellar zones of the PLLA spherulites that are formed previously. Therefore, the lamellae of PLLA, PCL, and PEO exist side-by-side within a unique spherulite, constituting a novel triple crystalline superstructure. The theoretical analysis of SAXS curves implies that only one lamella of either PCL or PEO can occupy the interlamellar space in between two contiguous lamellae of PLLA. Several complex competitive effects such as plasticizing, nucleation, anti-plasticizing, and confinement take place during the isothermal crystallization of each block in the terpolymers. New results on how successive self-nucleation and annealing thermal treatment can be used as an additional suitable technique to properly separate the three crystalline phases in these triple crystalline triblock terpolymers are also included.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1C. M. Bates, F. S. Bates, Macromolecules 2017, 50, 3.
- 2I. W. Hamley, in Encyclopedia of Polymer Science and Technology, John Wiley & Sons, New York 2002, p. 457.
- 3I. W. Hamley, The Physics of Block Copolymers, Oxford University Press, Oxford, UK 1998.
10.1093/oso/9780198502180.001.0001 Google Scholar
- 4N. Hadjichristidis, M. Pitsikalis, H. Iatrou, Adv. Polym. Sci. 2005, 189, 1.
- 5S. Huang, S. Jiang, RSC Adv. 2014, 4, 24566.
- 6M. J. Barthel, F. H. Schacher, U. S. Schubert, Polym. Chem. 2014, 5, 2647.
- 7X. Guo, L. Wang, X. Wei, S. Zhou, J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 3525.
- 8H. Danafar, Drug Res. 2016, 66, 506.
- 9L. Zha, W. Hu, Prog. Polym. Sci. 2016, 54–55, 232.
- 10S. Nakagawa, H. Marubayashi, S. Nojima, Eur. Polym. J. 2015, 70, 262.
- 11W. N. He, J. T. Xu, Prog. Polym. Sci. 2012, 37, 1350.
- 12C. Yu, Q. Xie, Y. Bao, G. Shan, P. Pan, Crystals 2017, 7, 150.
- 13R. M. Michell, A. J. Müller, Prog. Polym. Sci. 2016, 54–55, 183.
- 14A. J. Müller, M. L. Arnal, A. T. Lorenzo, in Handbook of Polymer Crystallization (Eds: E. Piorkowska, G. C. Rutledge), John Wiley and Sons, Hoboken, NJ 2013, p. 347.
10.1002/9781118541838.ch12 Google Scholar
- 15H. Takeshita, T. Shiomi, K. Takenaka, F. Arai, Polymer 2013, 54, 4776.
- 16S. Li, R. A. Register, in Handbook of Polymer Crystallization (Eds: E. Piorkowska, G. C. Rutledge), John Wiley and Sons, Hoboken, NJ 2013, p. 327.
10.1002/9781118541838.ch11 Google Scholar
- 17R. V. Castillo, A. J. Müller, Prog. Polym. Sci. 2009, 34, 516.
- 18A. J. Müller, M. L. Arnal, V. Balsamo, Lect. Notes Phys. 2007, 714, 229.
- 19A. J. Müller, V. Balsamo, M. L. Arnal, Adv. Polym. Sci. 2005, 190, 1.
- 20V. Abetz, P. F. W. Simon, Adv. Polym. Sci. 2005, 189, 125.
- 21I. Hamley, Adv. Polym. Sci. 1999, 148, 113.
- 22R. M. Van Horn, M. R. Steffen, D. O'Connor, Polym. Cryst. 2018, 1, e10039.
- 23Y. L. Loo, R. A. Register, A. J. Ryan, Macromolecules 2002, 35, 2365.
- 24H. Ge, F. J. Zhang, H. Y. Huang, T. B. He, Acta Polym. Sin. 2019, 50, 82.
- 25M. Ponjavic, M. S. Nikolic, S. Jevtic, J. Rogan, S. Stevanovic, J. Djonlagic, Macromol. Res. 2016, 24, 323.
- 26Y. Li, J. Zhou, J. Zhang, Q. Gou, Q. Gu, Z. Wang, J. Macromol. Sci., Part B 2014, 53, 1137.
- 27Y. Li, H. Huang, Z. Wang, T. He, Macromolecules 2014, 47, 1783.
- 28F. F. Xue, X. S. Chen, L. J. An, S. S. Funari, S. C. Jiang, Chin. J. Polym. Sci. 2013, 31, 1260.
- 29F. Xue, X. Chen, L. An, S. S. Funari, S. Jiang, Polym. Int. 2012, 61, 909.
- 30J. Sun, C. He, X. Zhuang, X. Jing, X. Chen, J. Polym. Res. 2011, 18, 2161.
- 31R. M. Van Horn, J. X. Zheng, H. J. Sun, M. S. Hsiao, W. B. Zhang, X. H. Dong, J. Xu, E. L. Thomas, B. Lotz, S. Z. D. Cheng, Macromolecules 2010, 43, 6113.
- 32L. Li, F. Meng, Z. Zhong, D. Byelov, W. H. De Jeu, J. Feijen, J. Chem. Phys. 2007, 126, 024904.
- 33C. Hua, C.-M. Dong, J. Biomed. Mater. Res., Part A 2007, 82A, 689.
- 34M. Vivas, J. Contreras, F. López-Carrasquero, A. T. Lorenzo, M. L. Arnal, V. Balsamo, A. J. Müller, E. Laredo, H. Schmalz, V. Abetz, Macromol. Symp. 2006, 239, 58.
- 35C. He, J. Sun, T. Zhao, Z. Hong, X. Zhuang, X. Chen, X. Jing, Biomacromolecules 2006, 7, 252.
- 36S. Jiang, C. He, L. An, X. Chen, B. Jiang, Macromol. Chem. Phys. 2004, 205, 2229.
- 37M. L. Arnal, F. López-Carrasquero, E. Laredo, A. J. Müller, Eur. Polym. J. 2004, 40, 1461.
- 38L. Piao, Z. Dai, M. Deng, X. Chen, X. Jing, Polymer 2003, 44, 2025.
- 39M. L. Arnal, V. Balsamo, F. López-Carrasquero, J. Contreras, M. Carrillo, H. Schmalz, V. Abetz, E. Laredo, A. J. Müller, Macromolecules 2001, 34, 7973.
- 40B. Bogdanov, A. Vidts, A. Van Den Buicke, R. Verbeeck, E. Schacht, Polymer 1998, 39, 1631.
- 41S. Nojima, M. Ono, T. Ashida, Polym. J. 1992, 24, 1271.
- 42Z. Wei, L. Liu, F. Yu, P. Wang, M. Qi, J. Appl. Polym. Sci. 2009, 111, 429.
- 43Z. Wei, F. Yu, G. Chen, C. Qu, P. Wang, W. Zhang, J. Liang, M. Qi, L. Liu, J. Appl. Polym. Sci. 2009, 114, 1133.
- 44M. L. Arnal, S. Boissé, A. J. Müller, F. Meyer, J. M. Raquez, P. Dubois, R. E. Prud'Homme, CrystEngComm 2016, 18, 3635.
- 45D. Zhou, J. Sun, J. Shao, X. Bian, S. Huang, G. Li, X. Chen, Polymer 2015, 80, 123.
- 46J. Yang, Y. Liang, C. C. Han, Polymer 2015, 79, 56.
- 47F. Xue, X. Chen, L. An, S. S. Funari, S. Jiang, RSC Adv. 2014, 4, 56346.
- 48S. Huang, H. Li, S. Jiang, X. Chen, L. An, Polym. Bull. 2011, 67, 885.
- 49S. Huang, S. Jiang, L. An, X. Chen, J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 1400.
- 50J. Yang, T. Zhao, Y. Zhou, L. Liu, G. Li, E. Zhou, X. Chen, Macromolecules 2007, 40, 2791.
- 51C. Cai, L. U. Wang, C. M. Donc, J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 2034.
- 52J. Yang, T. Zhao, J. Cui, L. Liu, Y. Zhou, G. Li, E. Zhou, X. Chen, J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 3215.
- 53C. G. Mothé, W. S. Drumond, S. H. Wang, Thermochim. Acta 2006, 445, 61.
- 54C. I. Huang, S. H. Tsai, C. M. Chen, J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 2438.
- 55D. Shin, K. Shin, K. A. Aamer, G. N. Tew, T. P. Russell, J. H. Lee, J. Y. Jho, Macromolecules 2005, 38, 104.
- 56J. Sun, Z. Hong, L. Yang, Z. Tang, X. Chen, X. Jing, Polymer 2004, 45, 5969.
- 57K. S. Kim, S. Chung, I. J. Chin, M. N. Kim, J. S. Yoon, J. Appl. Polym. Sci. 1999, 72, 341.
- 58R. Liénard, N. Zaldua, T. Josse, J. D. Winter, M. Zubitur, A. Mugica, A. Iturrospe, A. Arbe, O. Coulembier, A. J. Müller, Macromol. Rapid Commun. 2016, 37, 1676.
- 59I. Navarro-Baena, A. Marcos-Fernández, A. Fernández-Torres, J. M. Kenny, L. Peponi, RSC Adv. 2014, 4, 8510.
- 60L. Peponi, I. Navarro-Baena, J. E. Báez, J. M. Kenny, A. Marcos-Fernández, Polymer 2012, 53, 4561.
- 61D. Yan, H. Huang, T. He, F. Zhang, Langmuir 2011, 27, 11973.
- 62M. T. Casas, J. Puiggalí, J. M. Raquez, P. Dubois, M. E. Córdova, A. J. Müller, Polymer 2011, 52, 5166.
- 63R. V. Castillo, A. J. Müller, J. M. Raquez, P. Dubois, Macromolecules 2010, 43, 4149.
- 64J. L. Wang, C. M. Dong, Macromol. Chem. Phys. 2006, 207, 554.
- 65I. W. Hamley, P. Parras, V. Castelletto, R. V. Castillo, A. J. Müller, E. Pollet, P. Dubois, C. M. Martin, Macromol. Chem. Phys. 2006, 207, 941.
- 66I. W. Hamley, V. Castelletto, R. V. Castillo, A. J. Müller, C. M. Martin, E. Pollet, P. Dubois, Macromolecules 2005, 38, 463.
- 67O. Jeon, S. H. Lee, S. H. Kim, Y. M. Lee, Y. H. Kim, Macromolecules 2003, 36, 5585.
- 68R. M. Ho, P. Y. Hsieh, W. H. Tseng, C. C. Lin, B. H. Huang, B. Lotz, Macromolecules 2003, 36, 9085.
- 69V. Tamboli, G. P. Mishra, A. K. Mitra, Colloid Polym. Sci. 2013, 291, 1235.
- 70Y.-W. Chiang, Y.-Y. Hu, J.-N. Li, S.-H. Huang, S.-W. Kuo, Macromolecules 2015, 48, 8526.
- 71J. K. Palacios, A. Mugica, M. Zubitur, A. Iturrospe, A. Arbe, G. Liu, D. Wang, J. Zhao, N. Hadjichristidis, A. J. Muller, RSC Adv. 2016, 6, 4739.
- 72L. Sun, L. J. Shen, M. Q. Zhu, C. M. Dong, Y. Wei, J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 4583.
- 73J. K. Palacios, A. Mugica, M. Zubitur, A. J. Müller, in Crystallization in Multiphase Polymer Systems 2018, p. 123.
10.1016/B978-0-12-809453-2.00006-2 Google Scholar
- 74J. K. Palacios, A. Tercjak, G. Liu, D. Wang, J. Zhao, N. Hadjichristidis, A. J. Müller, Macromolecules 2017, 50, 7268.
- 75J. K. Palacios, J. Zhao, N. Hadjichristidis, A. J. Müller, Macromolecules 2017, 50, 9683.
- 76A. J. Müller, M. Avila, G. Saenz, J. Salazar, in Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications (Eds: A. Jimenez, M. Peltzer, R. Ruseckaite), The Royal Society of Chemistry, Cambridge, UK 2015, p. 66.
- 77A. J. Müller, M. L. Arnal, Prog. Polym. Sci. 2005, 30, 559.
- 78A. J. Müller, R. M. Michell, R. A. Pérez, A. T. Lorenzo, Eur. Polym. J. 2015, 65, 132.
- 79H. Alamri, J. Zhao, D. Pahovnik, N. Hadjichristidis, Polym. Chem. 2014, 5, 5471.
- 80J. Zhao, D. Pahovnik, Y. Gnanou, N. Hadjichristidis, Polym. Chem. 2014, 5, 3750.
- 81M. Rubinstein, R. H. Colby, Polymer Physics, Oxford University Press, Oxford, UK 2003.
- 82C. He, J. Sun, J. Ma, X. Chen, X. Jing, Biomacromolecules 2006, 7, 3482.
- 83Y.-W. Chiang, Y.-Y. Hu, J.-N. Li, S.-H. Huang, S.-W. Kuo, Macromolecules 2015, 48, 8526.
- 84P. Pan, W. Kai, B. Zhu, T. Dong, Y. Inoue, Macromolecules 2007, 40, 6898.
- 85J. R. Sarasua, R. E. Prud'homme, M. Wisniewski, A. Le Borgne, N. Spassky, Macromolecules 1998, 31, 3895.
- 86Y. Wang, J. F. Mano, Eur. Polym. J. 2005, 41, 2335.
- 87M. L. Di Lorenzo, J. Appl. Polym. Sci. 2006, 100, 3145.