A Biodegradable Coating Based on Self-Assembled Hybrid Nanoparticles to Control the Performance of Magnesium
Jiadi Sun
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 P. R. China
Search for more papers by this authorYe Zhu
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 P. R. China
Search for more papers by this authorLong Meng
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 P. R. China
Search for more papers by this authorTiantian Shi
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 P. R. China
Search for more papers by this authorCorresponding Author
Xiaoya Liu
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 P. R. China
E-mail: [email protected]Search for more papers by this authorYufeng Zheng
State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorJiadi Sun
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 P. R. China
Search for more papers by this authorYe Zhu
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 P. R. China
Search for more papers by this authorLong Meng
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 P. R. China
Search for more papers by this authorTiantian Shi
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 P. R. China
Search for more papers by this authorCorresponding Author
Xiaoya Liu
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122 P. R. China
E-mail: [email protected]Search for more papers by this authorYufeng Zheng
State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871 P. R. China
Search for more papers by this authorAbstract
A new biodegradable nanocomposite coating to control the biocompatibility and anticorrosion property of Mg is reported in this work. The key feature of this strategy is to equip the Mg surfaces with poly(γ-glutamic acid)-g-7-amino-4-methylcoumarin/hydroxyapatite (γ-PGA-g-AMC/HA) hybrid nanoparticles via electrophoretic deposition in ethanol. The microstructures of the resulting nanocomposite coating are characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The results of standard electrochemical measurements along with immersion tests indicate that the nanocomposite coating has preferable in vitro degradation and corrosion resistance behavior than bare Mg. In addition, cytocompatibility is conducted using NIH3T3 cells and the coated sample shows better cell viability and cell adhesion than pure Mg substrate over the whole incubation period. The favorable anticorrosion behavior and cytocompatibility of the nanocomposite coating suggest that the newly developed γ-PGA-g-AMC/HA biodegradable nanocomposite coating may have a potential to improve the biological performance of Mg-based biomedical implants.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
macp201500214-sup-0001-S1.pdf466.5 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Witte, J. Fischer, J. Nellesen, H. A. Crostack, V. K. Pisch, F. Beckmann, H. Windhagen, Biomaterials 2006, 27, 1013.
- 2Y. F. Zheng, X. N. Gu, N. Li, W. R. Zhou, Mater. China 2011, 30, 30.
- 3M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias, Biomaterials 2006, 27, 1728.
- 4G. S. Wu, J. M. Ibrahim, P. K. Chu, Surf. Coat. Technol. 2013, 233, 2.
- 5W. D. Mueller, M. L. Nascimento, M. F. L. Mele, Acta Biomater. 2010, 6, 1749.
- 6F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. J. Wirth, H. Windhagen, Biomaterials 2005, 26, 3557.
- 7Y. F. Zheng, X. N. Gu, F. Witte, Mater. Sci. Eng. R 2014, 77, 1.
- 8F. Witte, N. Hort, C. Vogt, S. Cohen, K. U. Kainer, R. Willumeit, F. Feyerabend, Curr. Opin. Solid State Mater. Sci. 2008, 12, 63.
- 9R. G. Hu, S. Zhang, J. F. Bu, C. J. Lin, G. L Song, Prog. Org. Coat. 2012, 73, 129.
- 10S. Shadanbaz, G. J. Dias, Acta Biomater. 2012, 8, 20.
- 11Y. J. Chen, Z. G. Xu, C. Smith, J. Sankar, Acta Biomater. 2014, 10, 4561.
- 12H. Hornberger, S. Virtanen, A. R. Boccaccini, Acta Biomater. 2012, 8, 2442.
- 13H. M. Wong, K. W. K. Yeung, K. O. Lam, V. Tam, P. K. Chu, K. D. K. Luk, K. M. C. Cheung, Biomaterials 2010, 31, 2084.
- 14C. Pfaffenroth, A. Winkel, W. Dempwolf, L. J. Gamble, D. G. Castner, M. Stiesch, H. Menzel, Macromol. Biosci. 2011, 11, 1515.
- 15P. Lu, H. Fan, Y. Liu, L. Cao, X. Wu, X. H. Xu, Colloids Surf. B 2011, 83, 23.
- 16P. Lu, Y. Liu, M. Q. Guo, H. D. Fang, X. H. Xu, Mater. Sci. Eng. C 2011, 31, 1285.
- 17Y. Hu, X. Y. Gu, Y. Yang, J. Huang, M. Hu, W. K. Chen, Z. Tong, C. Y. Wang, ACS Appl. Mater. Interfaces 2014, 6, 17166.
- 18F. Siedenbiedel, A. Fuchs, T. Moll, M. Weide, R. Breves, J. C. Tiller, Macromol. Biosci. 2013, 13, 1447.
- 19S. Kunjukunju, A. Roy, M. Ramanathan, B. Lee, J. E. Candiello, P. N. Kumta, Acta Biomater. 2013, 9, 8690.
- 20A. Abdal-hay, N. A. M. Barakat, J. K. Lim, Ceram. Int. 2013, 39, 183.
- 21Z. L. Wei, P. Tian, X. Y. Liu, B. X. Zhou, Colloids Surf. B 2014, 121, 451.
- 22B. D. Hahn, D. S. Park, J. J. Choi, J. Ryu, W. H. Yoon, J. H. Choi, H. E. Kim, S. G. Kim, Surf. Coat. Technol. 2011, 205, 3112.
- 23R. Ma, R. F. Epand, I. Zhitomirsky, Coll. Surf. B 2010, 77, 279.
- 24I. Krylova, Prog. Org. Coat. 2001, 42, 119.
- 25R. Fernandes, L. Q. Wu, L. H. Chen, H. Yi, G. W. Rubloff, R. Ghodssi, W. E. Bentley, G. F. Payne, Langmuir 2003, 19, 4058.
- 26S. Seuss, A. R. Boccaccini, Biomacromolecules 2013, 14, 3355.
- 27Z. L. Wang, X. Q. Zhang, J. M. Gu, H. T. Yang, J. Nie, G. P. Ma, Carbohydr. Polym. 2014, 103, 38.
- 28J. D. Sun, X. Y. Liu, L. Meng, W. Wei, Y. F. Zheng, Langmuir 2014, 30, 11002.
- 29J. D. Sun, Y. Zhu, L. Meng, W. Wei, Y. Li, X. Y. Liu, Y. F. Zheng, J. Mater. Chem. B 2015, 3, 1667.
- 30M. Li, Q. Liu, Z. J. Jia, X. C. Xu, Y. Cheng, Y. F. Zheng, T. F. Xi, S. C. Wei, Carbon 2014, 67, 185.
- 31M. Li, Y. B. Wang, Q. Liu, Q. H. Li, Y. Cheng, Y. F. Zheng, F. F. Xia, S. C. Wei, J. Mater. Chem. B 2013, 1, 475.
- 32Z. J. Li, X. N. Gu, S. Q. Lou, Y. F. Zheng, Biomaterials 2008, 29, 1329.
- 33T. Kokubo, H. Takadama, Biomaterials 2006, 27, 2907.
- 34Y. Zhao, M. I. Jamesh, W. K. Li, G. S. Wu, C. X. Wang, Y. F. Zheng, K. W. K. Yeung, P. K. Chu, Acta Biomater. 2014, 10, 544.
- 35C. G. Overberger, M. Morimoto, J. Am. Chem. Soc. 1971, 93, 3222.
- 36F. Shima, T. F. Uto, T. Akagi, M. Akashi, Bioconjugate Chem. 2013, 24, 926.
- 37I. Zhitomirsky, Adv. Colloid Interface Sci. 2002, 97, 279.
- 38P. Sarkar, P. S. Nicholson, J. Am. Chem. Soc. 1996, 79, 1987.
- 39J. Lyklema, Adv. Colloid Interface Sci. 1968, 2, 65.
- 40N. K. Nga, L. T. Giang, T. Q. Huy, P. H. Viet, C. Migliaresi, Colloids Surf. B 2014, 116, 666.
- 41J. Luo, Q. Zhou, J. Sun, J. Q. Jiang, X. Zhou, H. W. Zhang, X. Y. Liu, J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 4037.
- 42J. Q. Jiang, Q. Z. Shu, X. Chen, Y. Q. Yang, C. L. Yi, X. Q. Song, X. Y. Liu, M. Q. Chen, Langmuir 2010, 26, 14247.
- 43Y. Gong, A. M. Zhu, Q. G. Zhang, Q. L. Liu, RSC Adv. 2014, 4, 9445.
- 44R. Baskar, D. Kesavan, M. Gopiraman, K. Subramanian, RSC Adv. 2013, 3, 17039.
- 45V. Ramkumara, S. Anandhib, P. Kannana, R. Gopalakrishnan, RSC Adv. 2015, 5, 586.
- 46R. Baskara, D. Kesavanb, M. Gopiramanc, K. Subramanian, Prog. Org. Coat. 2014, 77, 836.
- 47N. J. Ostrowski, B. Lee, A. Roy, M. Ramanathan, P. N. Kumta, J. Mater. Sci.: Mater. Med. 2013, 24, 85.
- 48R. Y. Zhang, S. Cai, G. H. Xu, H. Zhao, Y. Li, X. X. Wang, K. Huang, M. G. Ren, X. D. Wu, Appl. Surf. Sci. 2014, 313, 896.
- 49R. C. Zeng, A. G. Liu, F. Zhang, S. Q. Li, H. Z. Cui, E. H. Han, J. Mater. Chem. A 2014, 2, 13049.
- 50Y. J. Lu, P. Wan, B. C. Zhang, L. L. Tan, K. Yang, J. X. Lin, Mater. Sci. Eng. C 2014, 43, 264.
- 51J. C. Zhou, X. Z. Zhang, Q. Li, Y. Liu, F. N. Chen, L. Q. Li, J. Mater. Chem. B 2013, 1, 6213.
- 52F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, C. Vogt, N. Hort, Acta Biomater. 2010, 6, 1834.
- 53E. Groos, L. Walker, J. R. W. Masters, Cancer 1986, 58, 1199.
10.1002/1097-0142(19860915)58:6<1199::AID-CNCR2820580604>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- 54W. H. Ma, Y. Z. Zhang, Chin. J. Tissue Eng. Res. 2014, 18, 432.
- 55Y. Zhao, M. I. Jamesh, W. K. Li, G. S. Wu, C. X. Wang, Y. F. Zheng, K. W. K. Yeung, P. K. Chu, Acta Biomater. 2014, 10, 544.