Preparation and Evaluation of RGD-Conjugated Crosslinked PVA Tissue Engineered Vascular Scaffold with Endothelial Differentiation and Its Impact on Vascular Regeneration In Vivo
Xiafei Li
College of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorXuewei Zhang
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorYameng Wang
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorShenglu Ji
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorZiwei Zhao
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorJianshen Yin
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorTuo Yang
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorXin Feng
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Huaihe hospital, Henan University, Kaifeng, 475004 China
Search for more papers by this authorHongli Chen
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorWenbin Li
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorXianwei Wang
Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorChangqin Jing
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorCorresponding Author
Dan Ding
Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Liang Zhao
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXiafei Li
College of Medical Engineering, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorXuewei Zhang
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorYameng Wang
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorShenglu Ji
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorZiwei Zhao
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorJianshen Yin
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorTuo Yang
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorXin Feng
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Huaihe hospital, Henan University, Kaifeng, 475004 China
Search for more papers by this authorHongli Chen
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorWenbin Li
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorXianwei Wang
Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorChangqin Jing
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
Search for more papers by this authorCorresponding Author
Dan Ding
Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Liang Zhao
College of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
PVA has emerged as a prevalent material for the construction of vascular tissue engineering scaffolds. Nonetheless, the integration of 3D crosslinked polyvinyl alcohol (PVA) scaffolds featuring arginine-glycine-aspartate (RGD) binding remains a rarity in tissue engineering. In the present study, a PVA-4-azidobenzoic acid (AZ)-RGD scaffold is prepared based on cross-linking of two distinct PVA derivatives: one featuring photoreactive azides for ultraviolet (UV)-crosslinking and the other incorporating RGD peptides. The results show that the PVA-AZ-RGD scaffold has good blood compatibility and biomechanical properties, with hydrophilic properties, and a hydrolysis rate of 27.31% at 12 weeks. Notably, the incorporation of RGD peptides significantly bolsters the attachment and proliferation of mesenchymal stem cells (MSCs) on the scaffolds, compared to non-RGD-conjugated controls. Furthermore, RGD conjugation markedly accelerates endothelialization of MSCs following 15 days of endothelial culture. Post-transplantation, the PVA-AZ-RGD scaffold exhibits favorable blood flow patency, minimal immune rejection, promotes endothelialization and smooth muscle cell proliferation, and facilitates the development of extracellular matrix, ultimately contributing to the formation of regenerative artificial blood vessels. These comprehensive findings underscore the promising potential of RGD-integrated, crosslinked PVA scaffolds for applications in vascular tissue engineering.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1J. G. Nemeno-Guanzon, S. Lee, J. R. Berg, Y. H. Jo, J. E. Yeo, B. M. Nam, Y.-G. Koh, J. I. Lee, J. Biomed. Biotechnol. 2012, 2012, 956345.
- 2F. Zhang, T. Bambharoliya, Y. Xie, L. Liu, H. Celik, L. Wang, O. Akkus, M. W. King, Mater. Sci. Eng.: C 2021, 118, 111418.
- 3L. Jia, M. P. Prabhakaran, X. Qin, S. Ramakrishna, Mater. Sci. Eng.: C 2013, 33, 4640.
- 4J. Zhou, M. Wang, T. Wei, L. Bai, J. Zhao, K. Wang, Y. Feng, E ACS Appl. Mater. Interfaces 2021, 13, 16097.
- 5N. Wang, H. Wang, D. Weng, Y. Wang, L. Yu, F. Wang, T. Zhang, J. Liu, Z. He, Nanoscale Adv. 2023, 5, 6751.
- 6N. Wakabayashi, T. Yoshida, K. Oyama, D. Naruse, M. Tsutsui, Y. Kikuchi, D. Koga, H. Kamiya, Front. Cardiovasc. Med. 2022, 9, 946899.
- 7Y. Kikuchi, K. Oyama, T. Yoshida, D. Naruse, M. Tsutsui, S. Kunioka, N. Wakabayashi, H. Kamiya, Biomater. Sci. 2022, 10, 5208.
- 8G. Pohan, P. Chevallier, D. E. J. Anderson, J. W. Tse, Y. Yao, M. W. Hagen, D. Mantovani, M. T. Hinds, E. K. F. Yim, Front. Bioeng. Biotechnol. 2019, 7, 117.
- 9S. J. Park, J. Lee, J. W. Choi, J. H. Yang, J. H. Lee, J. Lee, Y. Son, C. W. Ha, N. K. Lee, S. H. Kim, S. H. Park, Mater. Sci. Eng. C. 2021, 118, 111406.
- 10J. Lam, T. Segura, Biomaterials 2013, 34, 3938.
- 11S. L. Bellis, Biomaterials 2011, 32, 4205.
- 12Z. Gong, L. E. Niklason, FASEB J. 2008, 22, 1635.
- 13S. Yan, M. M. Tu, Y. R. Qiu, Colloids Surf., B 2020, 188, 110769.
- 14W. Fu, Z. Liu, B. Feng, R. Hu, X. He, H. Wang, M. Yin, H. Huang, H. Zhang, W. Wang, Int. J. Nanomed. 2014, 9, 2335.
- 15K. Kopec, M. Wojasinski, M. Eichler, H. Genc, R. P. Friedrich, R. Stein, R. Singh, C. Alexiou, H. Hlawaty, T. Ciach, I. Cicha, Biomater. Adv. 2022, 134, 112544.
- 16E. Bahramzadeh, E. Yilmaz, T. Adali, Int. J. Biol. Macromol. 2019, 123, 1257.
- 17L. Yang, X. Li, D. Wang, S. Mu, W. Lv, Y. Hao, X. Lu, G. Zhang, W. Nan, H. Chen, L. Xie, Y. Zhang, Y. Dong, Q. Zhang, L. Zhao, J. Biomater. Sci., Polym. Ed. 2020, 31, 658.
- 18M. Zhang, K. Wang, Z. Wang, B. Xing, Q. Zhao, D. Kong, J. Mater. Sci.:Mater. Med. 2012, 23, 2639.
- 19P. Gupta, G. R. Chaudhuri, G. Janani, M. Agarwala, D. Ghosh, S. K. Nandi, B. B. Mandal, Adv. Healthcare Mater. 2021, 10, e2100750.
- 20J. Li, N. Zhuo, J. Zhang, Q. Sun, J. Si, K. Wang, D. Zhi, Acta Biomater. 2022, 151, 304.
- 21P. Du, X. Li, L. Sun, Y. Pan, H. Zhu, Y. Li, Y. Yang, X. Wei, C. Jing, H. Chen, Q. Shi, W. Li, L. Zhao, J. Biomed. Mater. Res., Part A 2021, 110, 635.
- 22H. Yan, Q. Cheng, J. Si, S. Wang, Y. Wan, X. Kong, T. Wang, W. Zheng, M. Rafique, X. Li, J. He, A. C. Midgley, Y. Zhu, K. Wang, D. Kong, Bioact Mater 2023, 26, 292.
- 23L. Bao, F. F. Hong, G. Li, G. Hu, L. Chen, Mater. Sci. Eng. C 2021, 122, 111922.
- 24A. Alessandrino, A. Chiarini, M. Biagiotti, I. Dal Pra, G. A. Bassani, V. Vincoli, P. Settembrini, P. Pierimarchi, G. Freddi, U. Armato, Front. Bioeng. Biotechnol. 2019, 7, 356.
- 25H. Yuan, C. Chen, Y. Liu, T. Lu, Z. Wu, J. Biomed. Mater. Res., Part A 2020, 108, 426.
- 26S. Pashneh-Tala, S. MacNeil, F. Claeyssens, Tissue Eng., Part B 2016, 22, 68.
- 27S. G. Kumbar, R. James, S. P. Nukavarapu, C. T. Laurencin, Biomed. Mater. 2008, 3, 034002.
- 28L. V. Thomas, U. Arun, S. Remya, P. D. Nair, J. Mater. Sci.: Mater. Med. 2009, 20, 259.
- 29H. Wang, Y. Feng, B. An, W. Zhang, M. Sun, Z. Fang, W. Yuan, M. Khan, J. Mater. Sci.: Mater. Med. 2012, 23, 1499.
- 30Y. Pan, X. Zhou, Y. Wei, Q. Zhang, T. Wang, M. Zhu, W. Li, R. Huang, R. Liu, J. Chen, G. Fan, K. Wang, D. Kong, Q. Zhao, Sci. Rep. 2017, 7, 3615.
- 31M. A. Cleary, E. Geiger, C. Grady, C. Best, Y. Naito, C. Breuer, Trends Mol. Med. 2012, 18, 394.
- 32F. Mohammadi, N. Golafshan, M. Kharaziha, A. Ashrafi, Int. J. Biol. Macromol. 2019, 127, 159.
- 33S. Sajeesh, T. Broekelman, R. P. Mecham, A. Ramamurthi, Acta Biomater. 2020, 113, 267.
- 34Y. Brudno, A. B. Ennett-Shepard, R. R. Chen, M. Aizenberg, D. J. Mooney, Biomaterials 2013, 34, 9201.
- 35S. F. Badylak, D. O. Freytes, T. W. Gilbert, Acta Biomater. 2009, 5, 1.
- 36J. Shi, X. Zhang, L. Jiang, L. Zhang, Y. Dong, A. C. Midgley, D. Kong, S. Wang, Acta Biomater. 2019, 97, 360.
- 37J. Fu, X. Ding, C. E. T. Stowell, Y. L. Wu, Y. Wang, Biomaterials 2020, 257, 120251.
- 38H. Kuang, Y. Wang, Y. Shi, W. Yao, X. He, X. Liu, X. Mo, S. Lu, P. Zhang, Biomaterials 2020, 259, 120288.
- 39T. Sologashvili, S. A. Saat, J. C. Tille, S. De Valence, D. Mugnai, J. P. Giliberto, J. Dillon, A. Yakub, Z. Dimon, R. Gurny, B. H. Walpoth, M. Moeller, Eur. J. Pharm. Biopharm. 2019, 139, 272.
- 40N. Jirofti, D. Mohebbi-Kalhori, A. Samimi, A. Hadjizadeh, G. H. Kazemzadeh, Biomed. Mater. 2018, 13, 055014.
- 41H. Liu, X. Li, G. Zhou, H. Fan, Y. Fan, Biomaterials 2011, 32, 3784.
- 42A. Mahara, M. Li, Y. Ohya, T. Yamaoka, Biomacromolecules 2020, 21, 3092.
- 43T. Zhu, H. Gu, H. Zhang, H. Wang, H. Xia, X. Mo, J. Wu, Acta Biomater. 2021, 119, 211.
- 44B. J. de Kort, S. E. Koch, T. B. Wissing, M. M. Krebber, C. V. C. Bouten, A. Smits, Adv. Drug Delivery Rev. 2021, 178, 113960.
- 45S. Farah, J. C. Doloff, P. Muller, A. Sadraei, H. J. Han, K. Olafson, K. Vyas, H. H. Tam, J. Hollister-Lock, P. S. Kowalski, M. Griffin, A. Meng, M. McAvoy, A. C. Graham, J. McGarrigle, J. Oberholzer, G. C. Weir, D. L. Greiner, R. Langer, D. G. Anderson, Nat. Mater. 2019, 18, 892.
- 46D. E. Muylaert, G. C. van Almen, H. Talacua, J. O. Fledderus, J. Kluin, S. I. Hendrikse, J. L. van Dongen, E. Sijbesma, A. W. Bosman, T. Mes, S. H. Thakkar, A. I. Smits, C. V. Bouten, P. Y. Dankers, M. C. Verhaar, Biomaterials 2016, 76, 187.