Near-Unity and Near-Zero-Thermal-Quenching Luminescent GAGG–Al2O3:Cr3+ Ceramic via Containerless Solidification and Glass Crystallization Methods for NIR Spectroscopy Application
Yuhao Xiao
College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou, 341000 China
Search for more papers by this authorCorresponding Author
Lei Han
College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou, 341000 China
Guorui Kechuang Rare Earth Functional Materials (Ganzhou) Co., Ltd (National Rare Earth Functional Materials Innovation Center), Ganzhou, 341100 China
E-mail: [email protected]; [email protected]; [email protected][email protected]
Search for more papers by this authorZongliang Xiao
School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000 China
Search for more papers by this authorJun Song
College of Energy Engineering, Henan Key Laboratory of Smart Lighting, Huanghuai University, Zhumadian, 463000 China
Search for more papers by this authorTingting Li
Institute of Technology, Xingtai Open University, Xingtai, 054000 China
Search for more papers by this authorJianlei Liu
School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao, 334001 China
Search for more papers by this authorTaoyong Liu
College of Urban and Rural Construction, Shaoyang University, Shaoyang, 422100 China
Search for more papers by this authorDecai Huang
College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou, 341000 China
Guorui Kechuang Rare Earth Functional Materials (Ganzhou) Co., Ltd (National Rare Earth Functional Materials Innovation Center), Ganzhou, 341100 China
Search for more papers by this authorWeixiong You
Institute of Technology, Xingtai Open University, Xingtai, 054000 China
Search for more papers by this authorCorresponding Author
Xiuxun Han
Guorui Kechuang Rare Earth Functional Materials (Ganzhou) Co., Ltd (National Rare Earth Functional Materials Innovation Center), Ganzhou, 341100 China
School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000 China
E-mail: [email protected]; [email protected]; [email protected][email protected]
Search for more papers by this authorCorresponding Author
Xinyuan Sun
Department of Physics, Jinggangshan University, Ji'an, 343009 China
E-mail: [email protected]; [email protected]; [email protected][email protected]
Search for more papers by this authorCorresponding Author
Xinyu Ye
College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou, 341000 China
Guorui Kechuang Rare Earth Functional Materials (Ganzhou) Co., Ltd (National Rare Earth Functional Materials Innovation Center), Ganzhou, 341100 China
E-mail: [email protected]; [email protected]; [email protected][email protected]
Search for more papers by this authorYuhao Xiao
College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou, 341000 China
Search for more papers by this authorCorresponding Author
Lei Han
College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou, 341000 China
Guorui Kechuang Rare Earth Functional Materials (Ganzhou) Co., Ltd (National Rare Earth Functional Materials Innovation Center), Ganzhou, 341100 China
E-mail: [email protected]; [email protected]; [email protected][email protected]
Search for more papers by this authorZongliang Xiao
School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000 China
Search for more papers by this authorJun Song
College of Energy Engineering, Henan Key Laboratory of Smart Lighting, Huanghuai University, Zhumadian, 463000 China
Search for more papers by this authorTingting Li
Institute of Technology, Xingtai Open University, Xingtai, 054000 China
Search for more papers by this authorJianlei Liu
School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao, 334001 China
Search for more papers by this authorTaoyong Liu
College of Urban and Rural Construction, Shaoyang University, Shaoyang, 422100 China
Search for more papers by this authorDecai Huang
College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou, 341000 China
Guorui Kechuang Rare Earth Functional Materials (Ganzhou) Co., Ltd (National Rare Earth Functional Materials Innovation Center), Ganzhou, 341100 China
Search for more papers by this authorWeixiong You
Institute of Technology, Xingtai Open University, Xingtai, 054000 China
Search for more papers by this authorCorresponding Author
Xiuxun Han
Guorui Kechuang Rare Earth Functional Materials (Ganzhou) Co., Ltd (National Rare Earth Functional Materials Innovation Center), Ganzhou, 341100 China
School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000 China
E-mail: [email protected]; [email protected]; [email protected][email protected]
Search for more papers by this authorCorresponding Author
Xinyuan Sun
Department of Physics, Jinggangshan University, Ji'an, 343009 China
E-mail: [email protected]; [email protected]; [email protected][email protected]
Search for more papers by this authorCorresponding Author
Xinyu Ye
College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou, 341000 China
Guorui Kechuang Rare Earth Functional Materials (Ganzhou) Co., Ltd (National Rare Earth Functional Materials Innovation Center), Ganzhou, 341100 China
E-mail: [email protected]; [email protected]; [email protected][email protected]
Search for more papers by this authorAbstract
Near-infrared (NIR) light is widely used in real-time testing fields such as organic component detection and biological imaging owing to its strong tissue penetration and nondestructive properties. However, the performance of NIR phosphor-converted light-emitting diodes (pc-LEDs) is constrained by limitations in efficiency and output power. In this work, the Gd3Al3Ga2O12 (GAGG)–Al2O3:Cr3+ ceramics are successfully synthesized via containerless solidification and glass crystallization methods. The Al2O3 matrix functions as an optically active component akin to GAGG, mitigating concentration quenching effects while preserving strong light absorption. Under 450 nm light excitation, the ceramic exhibits intense NIR luminescence, achieving exceptional internal/external quantum efficiencies (IQE/EQE = 96.8%/46.1%) and remarkable thermal stability (94.3%@150 °C). The ceramic-converted NIR LED (cc-LED) demonstrates outstanding photoelectric conversion efficiency (28%@350 mA) and robust NIR light output (236 mW@350 mA). Additionally, the laser diode (LD)-excited NIR device achieves an exceptional watt-level light output (1.52 W@10 W mm−2). As a proof of concept, this NIR light source shows immense potential for diverse applications including plant illumination, nondestructive testing, and bioimaging systems. Therefore, this innovative GAGG–Al2O3:Cr3+ NIR-LED&LD not only broadens the practical application scope of NIR light sources but also offers a transformative pathway for next-generation compact high-power devices in this field.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
lpor202500165-sup-0001-SuppMat.docx20.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) G. F. Imbusch, B. Henderson, Mater. Today 2006, 9, 51; b) C. N. G. Scotter, Trends Food Sci. Technol. 1997, 8, 285.
- 2X. Zhang, W. Ye, X. Bu, P. Zheng, L. Li, F. Wen, W. Bai, L. Zheng, Y. Zhang, Dalton Trans. 2020, 50, 124.
- 3C. Zhong, Y. Xu, X. Wu, S. Yin, X. Zhang, L. Zhou, H. You, Adv. Mater. 2023, 36, 2309500.
- 4J. J. Wierer, Jr., J. Y. Tsao, D. S. Sizov, Laser Photonics Rev. 2013, 7, 963.
- 5G. Zheng, W. Xiao, H. Wu, J. Wu, X. Liu, J. Qiu, Laser Photonics Rev. 2021, 15, 2100060.
- 6a) K. J. Hwan, Y. Y. Jin, Y. Lee, H. Jeong, S. Y. Min, iScience 2022, 25, 104727; b) H. Lin, T. Hu, Y. Cheng, M. Chen, Y. Wang, Laser Photonics Rev. 2018, 12, 1700344.
- 7C. Zhang, J. Lin, Chem. Soc. Rev. 2012, 41, 7938.
- 8Z. Xiao, S. Qin, X. Guo, X. Xu, W. Anaerguli, W. Jiang, J. Gou, A. Lu, W. You, L. Han, J. Lumin. 2022, 247, 118907.
- 9a) H. Jiang, L. Chen, X. Wu, Z. Luo, R. Li, Y. Liu, Z. Liu, P. Sun, W. You, J. Jiang, Adv. Mater. Tech. 2022, 7, 2200519; b) H. Jiang, L. Chen, G. Zheng, Z. Luo, X. Wu, Z. Liu, R. Li, Y. Liu, P. Sun, J. Jiang, Adv. Opt. Mater. 2022, 10, 2102741.
- 10G. Liu, W. Chen, Z. Xiong, Y. Wang, S. Zhang, Z. Xia, Nat. Photonics 2024, 18, 562.
- 11Y. Ma, C. Shao, L. Wu, X. Li, Y. Tian, L. Zeng, L. Lu, B. Zhang, Z. Wang, X. Chen, D. Xue, G. Jiang, Y. Hui, S. Chen, D. Chen, Ceram. Int. 2024, 50, 26624.
- 12a) I. Milisavljevic, M. Zhang, Q. Jiang, Q. Liu, Y. Wu, J. Materiomics 2025, 11, 100872; b) S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang, Z. L. Dong, G. E. B. Tan, W. X. Que, T. S. Zhang, S. Li, L. B. Kong, Prog. Solid State Chem. 2013, 41, 20.
- 13D. M. Herlach, R. F. Cochrane, I. Egry, H. J. Fecht, A. L. Greer, Int. Mater. Rev. 2013, 38, 273.
10.1179/095066093790326267 Google Scholar
- 14a) J. Xia, M. Zhang, R. Guo, Y. Sahi, X. Liu, X. Pan, K. Chen, W. Deng, J. Alloys Compd. 2021, 872, 0912003; b) S. Zhao, B. Fang, J. Yu, J. Fang, H. He, T. Xu, J. Ni, K. Ma, Optik 2023, 283, 170874.
- 15A. Mathieu, A. Salaheddine, F. Franck, S. Matthew, P. Florence, C. Thierry, M. Guy, Adv. Mater. 2012, 24, 5570.
- 16S. Alahrache, K. A. Saghir, S. Chenu, Chem. Mater. 2013, 25, 4017.
- 17X. Ma, X. Li, J. Li, C. Genevois, B. Ma, A. Etienne, C. Wan, E. Veron, Z. Peng, M. Allix, Nat. Commun. 2018, 9, 1175.
- 18J. Fu, Y. Zhang, Z. Ma, L. Bai, R. Fan, W. Xu, M. Allix, C. Genevois, E. Veron, Y. Yang, H. Wang, J. Li, Ceram. Int. 2024, 50, 8073.
- 19M. Boyer, A. J. F. Carrion, S. Ory, A. Isabel Becerro, S. Villette, S. V. Eliseeva, S. Petoud, P. Aballea, G. Matzen, M. Allix, J. Mater. Chem. C 2016, 4, 3238.
- 20a) M. Buryi, Y. Tratsiak, E. Trusova, V. Babin, J. Paterek, R. Kučerková, Z. Remeš, F. Hájek, L. Landová, J. Drahokoupil, S. Chertopalov, Radiat. Meas. 2023, 163, 106932; b) M. Fasoli, A. Vedda, M. Nikl, C. Jiang, B. P. Uberuaga, D. A. Andersson, K. J. McClellan, C. R. Stanek, Phys. Rev. B 2011, 84, 081102.
- 21a) Y. Wang, G. Baldoni, W. H. Rhodes, C. Brecher, A. Shah, U. Shirwadkar, J. Glodo, N. Cherepy, S. Payne, Proc. SPIE OPTICAL ENGINEERING + APPLICATIONS 2012, 8507, 850717; b) J. Y. Zhang, Z. H. Luo, Y. F. Liu, H. C. Jiang, J. Jiang, G. Q. Liu, J. X. Zhang, H. M. Qin, J. Eur. Ceram. Soc. 2017, 37, 4925; c) F. Meng, M. Koschan, C. L. Melcher, P. Cohen, Mater. Sci. Eng., B 2015, 193, 20; d) K. Kamada, A. Yoshikawa, T. Endo, K. Tsutsumi, Y. Shoji, S. Kurosawa, Y. Yokota, P. Prusa, M. Nikl, J. Cryst. Growth 2015, 410, 14; e) S. K. Yadav, B. P. Uberuaga, M. Nikl, C. Jiang, C. R. Stanek, Phys. Rev. Appl. 2015, 4, 054012.
- 22M. Nikl, A. Yoshikawa, Adv. Opt. Mater. 2015, 3, 463.
- 23M. Allix, S. Alahrache, F. Fayon, M. Suchomel, F. Porcher, T. Cardinal, G. Matzen, Adv. Mater. 2012, 24, 5570.
- 24A. C. Sackville Hamilton, G. I. Lampronti, S. E. Rowley, S. E. Dutton, J. Phys. Condens. Matter. 2014, 26, 116001.
- 25D. Wu, H. Wu, Y. Xiao, X. Dong, Y. Wang, W. Zhou, Y. Liu, L. Zhang, J. Lumin. 2022, 244, 118750.
- 26J. Wang, L. Jiang, R. Pang, S. Zhang, D. Li, K. Li, C. Li, H. Zhang, Inorg. Chem. Front. 2022, 9, 2240.
- 27X. Meng, G. Zhang, N. Li, Chem. Eng. J. 2017, 314, 249.
- 28a) A. R. Molla, C. R. Kesavulu, R. P. S. Chakradhar, A. Tarafder, S. K. Mohanty, J. L. Rao, B. Karmakar, S. K. Biswas, J. Alloys Compd. 2014, 583, 498; b) S. Wang, Q. Chen, J. Eur. Ceram. Soc. 2023, 43, 3572.
- 29A. Yamaji, V. V. Kochurikhin, S. Kurosawa, A. Suzuki, Y. Fujimoto, Y. Yokota, A. Yoshikawa, IEEE Trans. Nucl. Sci. 2014, 61, 320.
- 30G. N. A. De Guzman, M. H. Fang, C. H. Liang, Z. Bao, S. F. Hu, R. S. Liu, J. Lumin. 2020, 219, 116944.
- 31B. Sun, L. Zhang, T. Zhou, C. Shao, L. Zhang, Y. Ma, Q. Yao, Z. Jiang, F. A. Selim, H. Chen, J. Mater. Chem. C 2019, 7, 4057.
- 32M. Jiao, N. Guo, W. Lv, Y. Jia, W. Lv, Q. Zhao, B. Shao, H. You, Inorg. Chem. 2013, 52, 10340.
- 33S. Qin, Z. Liu, Y. Xiao, S. Zhang, Y. Wei, Z. Xiao, D. Wu, L. Han, Opt. Mater. 2024, 157, 116195.
- 34H. Chang, Z. Xiao, J. Liu, W. Jiang, J. Gou, X. Guo, S. Qin, Q. Zhang, W. You, L. Han, Ceram. Int. 2023, 49, 309.
- 35a) E. T. Basore, W. Xiao, X. Liu, J. Wu, J. Qiu, Adv. Opt. Mater. 2020, 8, 2000296; b) Z. Jia, C. Yuan, Y. Liu, X. J. Wang, P. Sun, L. Wang, H. Jiang, J. Jiang, Light: Sci. Appl. 2020, 9, 86.
- 36S. Li, L. Wang, N. Hirosaki, R. J. Xie, Laser Photonics Rev. 2018, 12, 1800173.
- 37D. Wu, L. Fu, S. He, F. Xu, L. Liu, L. Yao, F. Du, J. Peng, X. Ye, Ceram. Int. 2020, 46, 25382.
- 38C. Li, J. Zhong, Adv. Opt. Mater. 2022, 11, 2202323.
- 39S. Chen, M. Han, J. Li, Y. Li, Z. Gao, Y. Zhang, M. Meng, Q. Zhang, D. Deng, L. Chen, Ceram. Int. 2023, 49, 36360.
- 40H. S. Zhang, J. Y. Zhong, F. Du, L. Chen, X. L. Zhang, Z. F. Mu, W. R. Zhao, ACS Appl. Mater. Interfaces 2022, 14, 11663.
- 41a) C. M. Liu, Z. M. Qi, C. G. Ma, P. Dorenbos, D. J. Hou, S. Zhang, X. J. Kuang, J. H. Zhang, H. B. Liang, Chem. Mater. 2014, 26, 3709; b) J. H. Ryu, H. S. Won, Y. G. Park, S. H. Kim, W. Y. Song, H. Suzuki, C. Yoon, Appl. Phys. A: Mater. Sci. Process. 2009, 95, 747.
- 42J. Cho, E. F. Schubert, J. K. Kim, Laser Photonics Rev. 2013, 7, 408.
- 43M. Qiang, Y. Tang, S. Ye, W. Lou, J. Chao, H. Lin, D. Zhang, Ceram. Int. 2024, 50, 4823.
- 44X. Wu, Z. Luo, Y. Zhuang, Z. Liu, P. Sun, Y. Liu, L. Zhang, H. Qin, J. Jiang, Ceram. Int. 2023, 49, 21688.
- 45T. Wang, Y. Wang, W. Chen, Z. Xia, Laser Photonics Rev. 2023, 18, 2300784.
- 46G. Zheng, W. Xiao, J. Wu, X. Liu, H. Masai, J. Qiu, Adv. Sci. 2022, 9, e2105713.
- 47L. You, R. Tian, T. Zhou, R. J. Xie, Chem. Eng. J. 2021, 417, 129224.
- 48C. Cozzan, G. Lheureux, N. O'Dea, E. E. Levin, J. Graser, T. D. Sparks, S. Nakamura, S. P. DenBaars, C. Weisbuch, R. Seshadri, ACS Appl. Mater. Interfaces 2018, 10, 5673.
- 49B. Zhang, J. Liu, C. Wang, K. Yang, C. Lee, H. Zhang, J. He, Laser Photonics Rev. 2020, 14, 1900240.
- 50M. Shi, L. Yao, J. Xu, C. Liang, Y. Dong, Q. Shao, J. Am. Ceram. Soc. 2021, 104, 3279.
- 51a) F. Gan, S. Zhang, N. C. Rockwell, S. S. Martin, J. C. Lagarias, D. A. Bryant, Sci. 2014, 345, 1312; b) Z. Yang, W. He, S. Mou, X. Wang, D. Chen, X. Hu, L. Chen, J. Bai, Trans. Chin. Soc. Agric. Eng. 2017, 33, 173.
- 52L. Chu, Y. Qin, T. Yang, J. Wan, Q. Zhou, H. Tang, Y. Ye, Z. Wang, Mater. Adv. 2023, 4, 4583.
- 53W. Setyawan, S. Curtarolo, Comput. Mater. Sci. 2010, 49, 299.