Exceptionally High Nonlinear Optical Response in Two-dimensional Type II Dirac Semimetal Nickel Di-Telluride (NiTe2)
Saswata Goswami
School of Nano Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302 India
Search for more papers by this authorCaique Campos de Oliveira
Center for Natural and Human Sciences (CCNH), Federal University of ABC, Rua Santa Adélia 166, Santo André, 09210-170 Brazil
Search for more papers by this authorBruno Ipaves
Center for Natural and Human Sciences (CCNH), Federal University of ABC, Rua Santa Adélia 166, Santo André, 09210-170 Brazil
Search for more papers by this authorPreeti Lata Mahapatra
School of Nano Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302 India
Search for more papers by this authorVarinder Pal
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302 India
Search for more papers by this authorSuman Sarkar
Department of Materials Engineering, Indian Institute of Technology Jammu, Jammu, Jammu & Kashmir, 181221 India
Search for more papers by this authorCorresponding Author
Pedro A. S. Autreto
Center for Natural and Human Sciences (CCNH), Federal University of ABC, Rua Santa Adélia 166, Santo André, 09210-170 Brazil
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Samit K. Ray
Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chandra Sekhar Tiwary
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorSaswata Goswami
School of Nano Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302 India
Search for more papers by this authorCaique Campos de Oliveira
Center for Natural and Human Sciences (CCNH), Federal University of ABC, Rua Santa Adélia 166, Santo André, 09210-170 Brazil
Search for more papers by this authorBruno Ipaves
Center for Natural and Human Sciences (CCNH), Federal University of ABC, Rua Santa Adélia 166, Santo André, 09210-170 Brazil
Search for more papers by this authorPreeti Lata Mahapatra
School of Nano Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302 India
Search for more papers by this authorVarinder Pal
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302 India
Search for more papers by this authorSuman Sarkar
Department of Materials Engineering, Indian Institute of Technology Jammu, Jammu, Jammu & Kashmir, 181221 India
Search for more papers by this authorCorresponding Author
Pedro A. S. Autreto
Center for Natural and Human Sciences (CCNH), Federal University of ABC, Rua Santa Adélia 166, Santo André, 09210-170 Brazil
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Samit K. Ray
Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Chandra Sekhar Tiwary
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302 India
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Nickel ditelluride (NiTe2) is a newly identified Type-II Dirac semimetal, showing novel characteristics in electronic transport and optical experiments. This study explores the nonlinear optical properties of 2D NiTe2 using experimental and computational techniques (density functional theory-based approach). Few layered 2D-NiTe2 are synthesized using liquid phase exfoliation (LPE), which is characterized using X-ray diffraction technique, transmission electron, and atomic force microscopy. The nonlinear refractive index () and third-order nonlinear susceptibility () of the prepared 2D-NiTe2 are determined from the self-induced diffraction pattern generated using different wavelengths (λ = 650, 532, and 405 nm) in the far field. In addition, the diffraction pattern generated by spatial self-phase modulation (SSPM) is further verified by varying concentration (2D-NiTe2 in the IPA solvent), wavelength (of incoming laser beams), and cuvette width (active path length). The high value of third-order nonlinear susceptibility for a monolayer (in order of ×10−9 e.s.u.) determined using SSPM in the 2D-NiTe2 can be attributed to the laser-induced hole coherence effect. Last, utilizing the reverse saturable absorption property of 2D-hBN, asymmetric light propagation is also demonstrated in the 2D-NiTe2/2D-hBN heterostructure.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
lpor202400999-sup-0001-SuppMat.docx36.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, A. Kis, Nat. Rev. Mater. 2017, 2, 17033. b) G. H. Han, D. L. Duong, D. H. Keum, S. J. Yun, Y. H. Lee, Chem. Rev. 2018, 118, 6297.
- 2a) A. Burkov, Nat. Mater. 2016, 15, 1145. b) H. Weng, X. Dai, Z. Fang, J. Phys.: Condens. Matter 2016, 28, 303001; c) B. Yan, C. Felser, Annu. Rev. Condens. Matter Phys. 2017, 8, 337.
- 3A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 2009, 81, 109.
- 4a) A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, B. A. Bernevig, Nature 2015, 527, 495. b) Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava, B. A. Bernevig, Phys. Rev. Lett. 2016, 117, 056805.
- 5a) O. Clark, M. Neat, K. Okawa, L. Bawden, I. Marković, F. Mazzola, J. Feng, V. Sunko, J. Riley, W. Meevasana, Phys. Rev. Lett. 2018, 120, 156401. b) M. Bahramy, O. Clark, B.-J. Yang, J. Feng, L. Bawden, J. Riley, I. Marković, F. Mazzola, V. Sunko, D. Biswas, Nat. Mater. 2018, 17, 21.
- 6T.-R. Chang, S.-Y. Xu, D. S. Sanchez, W.-F. Tsai, S.-M. Huang, G. Chang, C.-H. Hsu, G. Bian, I. Belopolski, Z.-M. Yu, Phys. Rev. Lett. 2017, 119, 026404.
- 7a) C. Xu, B. Li, W. Jiao, W. Zhou, B. Qian, R. Sankar, N. D. Zhigadlo, Y. Qi, D. Qian, F.-C. Chou, Chem. Mater. 2018, 30, 4823. b) C. Rizza, D. Dutta, B. Ghosh, F. Alessandro, C.-N. Kuo, C. S. Lue, L. S. Caputi, A. Bansil, V. Galdi, A. Agarwal, ACS Appl. Nano Mater. 2022, 5, 18531.
- 8a) H. Huang, S. Zhou, W. Duan, Phys. Rev. B. 2016, 94, 121117. b) M. Yan, H. Huang, K. Zhang, E. Wang, W. Yao, K. Deng, G. Wan, H. Zhang, M. Arita, H. Yang, Nat. Commun. 2017, 8, 257. c) K. Zhang, M. Yan, H. Zhang, H. Huang, M. Arita, Z. Sun, W. Duan, Y. Wu, S. Zhou, Phys. Rev. B. 2017, 96, 125102.
- 9B. Ghosh, D. Mondal, C.-N. Kuo, C. S. Lue, J. Nayak, J. Fujii, I. Vobornik, A. Politano, A. Agarwal, Phys. Rev. B. 2019, 100, 195134.
- 10a) B. Zhao, W. Dang, Y. Liu, B. Li, J. Li, J. Luo, Z. Zhang, R. Wu, H. Ma, G. Sun, J. Am. Chem. Soc. 2018, 140, 14217. b) R. P. Dulal, B. R. Dahal, A. Forbes, N. Bhattarai, I. L. Pegg, J. Philip, J. Vac. Sci. Technol., B. 2019, 37, 042903.
- 11L. Zhang, C. Guo, C.-N. Kuo, H. Xu, K. Zhang, B. Ghosh, J. De Santis, D. W. Boukhvalov, I. Vobornik, V. Paolucci, Phys. Status Solidi RRL. 2021, 15, 2100212.
- 12Y. Zhang, L. Chen, T. Ding, J. Xu, X. Zhang, H. Liu, G. Chen, ACS Appl. Nano Mater. 2022, 5, 6094.
- 13S. Nappini, D. W. Boukhvalov, G. D'Olimpio, L. Zhang, B. Ghosh, C. N. Kuo, H. Zhu, J. Cheng, M. Nardone, L. Ottaviano, Adv. Funct. Mater. 2020, 30, 2000915.
- 14L. Yang, D. Liu, J. Li, Q. Yi, J. Yi, B. Huang, L. Miao, M. Wu, C. Zhao, Opt. Mater. Express 2020, 10, 1335.
- 15a) R. W. Boyd, A. L. Gaeta, E. Giese, in Springer Handbook of Atomic, Molecular, and Optical Physics, Springer, Berlin 2008 b) Y.-R. Shen, Laser Part. Beams 1984, 4, 318.
- 16S. Durbin, S. Arakelian, Y. Shen, Opt. Lett. 1981, 6, 411.
- 17R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J. Zhao, E. Wang, Nano Lett. 2011, 11, 5159.
- 18a) Y. Liao, C. Song, Y. Xiang, X. Dai, Ann. Phys. 2020, 532, 2000322. b) L. Wu, X. Yuan, D. Ma, Y. Zhang, W. Huang, Y. Ge, Y. Song, Y. Xiang, J. Li, H. Zhang, Small 2020, 16, 2002252. c) L. Wu, W. Huang, Y. Wang, J. Zhao, D. Ma, Y. Xiang, J. Li, J. S. Ponraj, S. C. Dhanabalan, H. Zhang, Adv. Funct. Mater. 2019, 29, 1806346. d) Y. Jia, Y. Liao, L. Wu, Y. Shan, X. Dai, H. Cai, Y. Xiang, D. Fan, Nanoscale 2019, 11, 4515. e) Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, J. Zhao, Proc. Natl. Acad. Sci. USA 2015, 112, 11800. f) X. Li, R. Liu, H. Xie, Y. Zhang, B. Lyu, P. Wang, J. Wang, Q. Fan, Y. Ma, S. Tao, Opt. Express 2017, 25, 18346. g) L. Hu, F. Sun, H. Zhao, J. Zhao, Opt. Lett. 2019, 44, 5214. h) K. Sk, B. Das, N. Chakraborty, M. Samanta, S. Bera, A. Bera, D. S. Roy, S. K. Pradhan, K. K. Chattopadhyay, M. Mondal, Adv. Opt. Mater. 2022, 10, 2200791. i) L. Wu, Z. Xie, L. Lu, J. Zhao, Y. Wang, X. Jiang, Y. Ge, F. Zhang, S. Lu, Z. Guo, Adv. Opt. Mater. 2018, 6, 1700985. j) Y. Jia, Y. Shan, L. Wu, X. Dai, D. Fan, Y. Xiang, Photonics Res. 2018, 6, 1040.
- 19E. Hendry, P. J. Hale, J. Moger, A. Savchenko, S. A. Mikhailov, Phys. Rev. Lett. 2010, 105, 097401.
- 20H. Zhang, S. Virally, Q. Bao, L. Kian Ping, S. Massar, N. Godbout, P. Kockaert, Opt. Lett. 2012, 37, 1856.
- 21a) P. Kumbhakar, C. C. Gowda, C. S. Tiwary, Front. Mater. 2021, 8, 721514. b) J. W. You, S. R. Bongu, Q. Bao, N. C. Panoiu, Nanophotonics 2019, 8, 63.
- 22M. T. James, S. Mandal, N. K. Sebastian, P. Mishra, R. Ganesan, P. A. Kumar, J. Phys.: Condens. Matter 2023, 35, 125701.
- 23L. Norén, V. Ting, R. Withers, G. Van Tendeloo, J. Solid State Chem. 2001, 161, 266.
- 24Y. Je, E. Kim, N. V. Binh, H. Kim, S.-y. Cho, D.-H. Lee, M. J. Kwon, M. Choi, J. H. Lee, W. H. Nam, Electron. Mater. Lett. 2023, 19, 452.
- 25X. Chia, Z. Sofer, J. Luxa, M. Pumera, Chem.-Eur. J. 2017, 23, 11719.
- 26a) K. D. Dobson, O. Rotlevi, D. Rose, G. Hodes, J. Electrochem. Soc. 2002, 149, G147. b) W. Bensch, W. Heid, M. Muhler, S. Jobic, R. Brec, J. Rouxel, J. Solid State Chem. 1996, 121, 87.
- 27G. Wang, S. Zhang, F. A. Umran, X. Cheng, N. Dong, D. Coghlan, Y. Cheng, L. Zhang, W. J. Blau, J. Wang, Appl. Phys. Lett. 2014, 104, 141909.
- 28D. J. Jones, S. A. Diddams, M. S. Taubman, S. T. Cundiff, L.-S. Ma, J. L. Hall, Opt. Lett. 2000, 25, 308.
- 29J. Zhang, X. Yu, W. Han, B. Lv, X. Li, S. Xiao, Y. Gao, J. He, Opt. Lett. 2016, 41, 1704.
- 30J. Yi, J. Li, S. Huang, L. Hu, L. Miao, C. Zhao, S. Wen, V. N. Mochalin, A. M. Rao, InfoMat 2020, 2, 601.
- 31Y. Liao, Y. Shan, L. Wu, Y. Xiang, X. Dai, Adv. Opt. Mater. 2020, 8, 1901862.
- 32Y. Shan, L. Wu, Y. Liao, J. Tang, X. Dai, Y. Xiang, J. Mater. Chem. C. 2019, 7, 3811.
- 33Y. Wang, Y. Tang, P. Cheng, X. Zhou, Z. Zhu, Z. Liu, D. Liu, Z. Wang, J. Bao, Nanoscale 2017, 9, 3547.
- 34a) Y. Huang, H. Zhao, Z. Li, L. Hu, Y. Wu, F. Sun, S. Meng, J. Zhao, Adv. Mater. 2023, 35, 2208362. b) L. Zhang, Z. Chen, K. Zhang, L. Wang, H. Xu, L. Han, W. Guo, Y. Yang, C.-N. Kuo, C. S. Lue, Nat. Commun. 2021, 12, 1584.
- 35C. Xu, B. Li, W. Jiao, W. Zhou, B. Qian, R. Sankar, N. D. Zhigadlo, Y. Qi, D. Qian, F.-C. Chou, X. Xu, Chem. Mater. 2018, 30, 4823.
- 36L. Cheng, F. Fei, H. Hu, Y. Dai, F. Song, J. Qi, Phys. Rev. B. 2022, 106, 104308.
- 37G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, J. Wang, Photonics Res. 2015, 3, A51.
- 38J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, W. J. Blau, Adv. Mater. 2009, 21, 2430.
- 39Y. Jia, Z. Li, M. Saeed, J. Tang, H. Cai, Y. Xiang, Opt. Express 2019, 27, 20857.
- 40L. Wu, Y. Dong, J. Zhao, D. Ma, W. Huang, Y. Zhang, Y. Wang, X. Jiang, Y. Xiang, J. Li, Adv. Mater. 2019, 31, 1807981.
- 41P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, P. M. Ajayan, Adv. Opt. Mater. 2015, 3, 828.
- 42P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, J. Phys.: Condens. Matter 2017, 29, 465901.
- 43G. Prandini, A. Marrazzo, I. E. Castelli, N. Mounet, N. Marzari, npj Comput. Mater. 2018, 4, 72.
- 44H. J. Monkhorst, J. D. Pack, Phys. Rev. B. 1976, 13, 5188.
- 45J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 46a) Y.-X. Lei, J.-P. Zhou, J.-Z. Wang, N.-X. Miao, Z.-Q. Guo, Q.-U. Hassan, Mater. Des. 2017, 117, 390. b) J.-F. Zhang, Y. Zhao, K. Liu, Y. Liu, Z.-Y. Lu, Phys. Rev. B 2021, 104, 035111. c) M. Aras, Ç. Kılıç, S. Ciraci, Phys. Rev. B. 2020, 101, 054429.
- 47S. Mukherjee, S. W. Jung, S. F. Weber, C. Xu, D. Qian, X. Xu, P. K. Biswas, T. K. Kim, L. C. Chapon, M. D. Watson, Sci. Rep. 2020, 10, 12957.
- 48J. A. Hlevyack, L.-Y. Feng, M.-K. Lin, R. A. B. Villaos, R.-Y. Liu, P. Chen, Y. Li, S.-K. Mo, F.-C. Chuang, T.-C. Chiang, npj 2D Mater. Appl. 2021, 5, 40.
- 49P. P. Ferreira, A. L. Manesco, T. T. Dorini, L. E. Correa, G. Weber, A. J. Machado, L. T. Eleno, Phys. Rev. B. 2021, 103, 125134.