2D Black Phosphorus Infrared Photodetectors
Corresponding Author
Xianjun Zhu
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
E-mail: [email protected], [email protected]
Search for more papers by this authorZheng Cai
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
Search for more papers by this authorQihan Wu
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
Search for more papers by this authorJinlong Wu
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
Search for more papers by this authorShujuan Liu
State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
Search for more papers by this authorXiang Chen
School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243002 P. R. China
Search for more papers by this authorCorresponding Author
Qiang Zhao
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Xianjun Zhu
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
E-mail: [email protected], [email protected]
Search for more papers by this authorZheng Cai
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
Search for more papers by this authorQihan Wu
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
Search for more papers by this authorJinlong Wu
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
Search for more papers by this authorShujuan Liu
State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
Search for more papers by this authorXiang Chen
School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243002 P. R. China
Search for more papers by this authorCorresponding Author
Qiang Zhao
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
2D black phosphorus (b-P) possesses several remarkable properties, including ambipolar transport, high carrier mobility, in-plane anisotropy, polarization sensitivity, a narrow direct bandgap that can be tuned with the number of layers, and highly compatible with silicon-based technologies. These characteristics make it a promising material for photodetection in the near-infrared to mid-infrared range. However, to date, most of the reviews on b-P are centered around electronic and optoelectronic devices, with few specifically addressing infrared detection. Herein, the recent research progress on b-P infrared detectors is summarized in this review. This article introduces the principle of optoelectronic detection, the main properties of 2D b-P, the development history of b-P fabrication methods, presents and discusses the performance and characteristics of various infrared photodetectors based on different structures of 2D b-P that have been researched in recent years. Finally, the challenges that may be faced by black phosphorus-based infrared photoelectric detectors are briefly introduced, and the potential application directions are discussed from the perspective of large-scale production and practical application. This article provides an in-depth analysis and evaluation of the future development prospects of 2D b-P materials as a potential excellent candidate of infrared photodetectors.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, J. Am. Chem. Soc. 2006, 128, 2115.
- 2R. Gade, T. B. Moeslund, Mach. Vision Appl. 2014, 25, 245.
- 3J. M. Kahn, J. R. Barry, Proc. IEEE 1997, 85, 265.
- 4M. A. Khalighi, M. Uysal, IEEE Commun. Surv. Tut. 2014, 16, 2231.
- 5E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, M. E. Ressler, R. M. Cutri, T. Jarrett, J. D. Kirkpatrick, D. Padgett, R. S. McMillan, M. Skrutskie, S. A. Stanford, M. Cohen, R. G. Walker, J. C. Mather, D. Leisawitz, T. N. Gautier, I. McLean, D. Benford, C. J. Lonsdale, A. Blain, B. Mendez, W. R. Irace, V. Duval, F. Liu, D. Royer, I. Heinrichsen, J. Howard, M. Shannon, M. Kendall, A. L. Walsh, et al., Astron. J. 2010, 140, 1868.
- 6M. Jamrógiewicz, J. Pharm. Biomed. Anal. 2012, 66, 1.
- 7J. Luypaert, D. L. Massart, Y. Vander Heyden, Talanta 2007, 72, 865.
- 8W. Herschel, Philos. Trans. R. Soc. London 1800, 90, 49.
10.1098/rstl.1800.0005 Google Scholar
- 9A. Einstein, Ann. Phys. 1905, 322, 132.
10.1002/andp.19053220607 Google Scholar
- 10C. Downs, T. E. Vandervelde, Sensors 2013, 13, 5054.
- 11A. Rogalski, J. Appl. Phys. 2003, 93, 4355.
- 12J. Bullock, M. Amani, J. Cho, Y.-Z. Chen, G. H. Ahn, V. Adinolfi, V. R. Shrestha, Y. Gao, K. B. Crozier, Y.-L. Chueh, A. Javey, Nat. Photonics 2018, 12, 601.
- 13P. Wang, H. Xia, Q. Li, F. Wang, L. Zhang, T. Li, P. Martyniuk, A. Rogalski, W. Hu, Small 2019, 15, e1904396.
- 14A. Rogalski, M. Kopytko, P. Martyniuk, Appl. Phys. Rev. 2019, 6, 021316.
- 15K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
- 16X. Guan, X. Yu, D. Periyanagounder, M. R. Benzigar, J. K. Huang, C. H. Lin, J. Kim, S. Singh, L. Hu, G. Liu, D. Li, J. H. He, F. Yan, Q. J. Wang, T. Wu, Adv. Opt. Mater. 2020, 9, 2001708.
- 17M. Xu, T. Liang, M. Shi, H. Chen, Chem. Rev. 2013, 113, 3766.
- 18H. Liu, Y. Du, Y. Deng, P. D. Ye, Chem. Soc. Rev. 2015, 44, 2732.
- 19Y. Yi, Z. Sun, J. Li, P. K. Chu, X. F. Yu, Small Methods 2019, 3, 1900165.
- 20D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, M. C. Hersam, ACS Nano 2014, 8, 1102.
- 21V. Eswaraiah, Q. Zeng, Y. Long, Z. Liu, Small 2016, 12, 3480.
- 22X. Ling, H. Wang, S. Huang, F. Xia, M. S. Dresselhaus, Proc. Natl. Acad. Sci. USA 2015, 112, 4523.
- 23Y. Cai, G. Zhang, Y. W. Zhang, Sci. Rep. 2014, 4, 6677.
- 24L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang, Nat. Nanotechnol. 2014, 9, 372.
- 25H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P. D. Ye, ACS Nano 2014, 8, 4033.
- 26L. Zhang, B. Wang, Y. Zhou, C. Wang, X. Chen, H. Zhang, Adv. Opt. Mater. 2020, 8, 2000045.
- 27H. Guo, W. Qi, Nano Res. 2022, 16, 3074.
- 28F. Zhuge, Z. Zheng, P. Luo, L. Lv, Y. Huang, H. Li, T. Zhai, Adv. Mater. Technol 2017, 2, 1700005.
- 29H. Fang, W. Hu, Adv. Sci. 2017, 4, 1700323.
- 30M. Long, P. Wang, H. Fang, W. Hu, Adv. Funct. Mater. 2018, 29, 1803807.
- 31H. Wang, Z. Li, D. Li, P. Chen, L. Pi, X. Zhou, T. Zhai, Adv. Funct. Mater. 2021, 31, 2103106.
- 32U. N. Noumbé, C. Gréboval, C. Livache, A. Chu, H. Majjad, L. E. Parra López, L. D. N. Mouafo, B. Doudin, S. Berciaud, J. Chaste, A. Ouerghi, E. Lhuillier, J.-F. Dayen, ACS Nano 2020, 14, 4567.
- 33C. Yang, G. Wang, M. Liu, F. Yao, H. Li, Nanomaterials 2021, 11, 2688.
- 34G. Rao, X. Wang, Y. Wang, P. Wangyang, C. Yan, J. Chu, L. Xue, C. Gong, J. Huang, J. Xiong, Y. Li, InfoMat 2019, 1, 272.
- 35Y. Niu, Y. Wang, W. Wu, P. Wang, J. Sun, J. Wen, X. Lu, P. Jiang, S. Zhang, N. Wang, D. Wu, Z. Zhao, Adv. Opt. Mater. 2020, 8, 2000833.
- 36P. W. Bridgman, J. Am. Chem. Soc. 1914, 36, 1344.
- 37J. C. Jamieson, Science 1963, 139, 1291.
- 38H. Asahina, A. Morita, J. Phys. C: Solid State Phys. 1984, 17, 1839.
- 39Y. Akahama, S. Endo, S.-i. Narita, J. Phys. Soc. Jpn. 1983, 52, 2148.
- 40A. Morita, Appl. Phys. A: Mater. Sci. Process. 1986, 39, 227.
- 41T. Nilges, M. Kersting, T. Pfeifer, J. Solid State Chem. 2008, 181, 1707.
- 42C. D. Zhang, J. C. Lian, W. Yi, Y. H. Jiang, L. W. Liu, H. Hu, W. D. Xiao, S. X. Du, L. L. Sun, H. J. Gao, J. Phys. Chem. C 2009, 113, 18823.
- 43S. Appalakondaiah, G. Vaitheeswaran, S. Lebègue, N. E. Christensen, A. Svane, Phys. Rev. B 2012, 86, 035105.
- 44Y. Liu, X. Duan, Y. Huang, X. Duan, Chem. Soc. Rev. 2018, 47, 6388.
- 45V. Tran, R. Soklaski, Y. Liang, L. Yang, Phys. Rev. B 2014, 89, 235319.
- 46H. Du, X. Lin, Z. Xu, D. Chu, J. Mater. Chem. C 2015, 3, 8760.
- 47X. Mu, J. Wang, M. Sun, Mater. Today Phys. 2019, 8, 92.
- 48R. Han, S. Feng, D.-M. Sun, H.-M. Cheng, Sci. China Inform. Sci. 2021, 64, 30.
- 49Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, Z. X. Shen, ACS Nano 2008, 2, 2301.
- 50V. M. Pereira, A. H. Castro Neto, Phys. Rev. Lett. 2009, 103, 046801.
- 51F. Guinea, Solid State Commun. 2012, 152, 1437.
- 52M. Zhang, L. Yang, X. Wu, J. Wang, Research 2023, 6, 0206.
- 53S. Wu, Y. Chen, X. Wang, H. Jiao, Q. Zhao, X. Huang, X. Tai, Y. Zhou, H. Chen, X. Wang, S. Huang, H. Yan, T. Lin, H. Shen, W. Hu, X. Meng, J. Chu, J. Wang, Nat. Commun. 2022, 13, 3198.
- 54S. Zhang, J. Yang, R. Xu, F. Wang, W. Li, M. Ghufran, Y.-W. Zhang, Z. Yu, G. Zhang, Q. Qin, Y. Lu, ACS Nano 2014, 8, 9590.
- 55L. Li, J. Kim, C. Jin, G. J. Ye, D. Y. Qiu, F. H. da Jornada, Z. Shi, L. Chen, Z. Zhang, F. Yang, K. Watanabe, T. Taniguchi, W. Ren, S. G. Louie, X. H. Chen, Y. Zhang, F. Wang, Nat. Nanotechnol. 2017, 12, 21.
- 56T. Low, A. S. Rodin, A. Carvalho, Y. Jiang, H. Wang, F. Xia, A. H. Castro Neto, Phys. Rev. B 2014, 90, 075434.
- 57J. Qiao, X. Kong, Z.-X. Hu, F. Yang, W. Ji, Nat. Commun. 2014, 5, 4475.
- 58X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, F. Xia, Nat. Nanotechnol. 2015, 10, 517.
- 59B. Deng, V. Tran, Y. Xie, H. Jiang, C. Li, Q. Guo, X. Wang, H. Tian, S. J. Koester, H. Wang, Nat. Commun. 2017, 8, 14474.
- 60J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H. J. Choi, K. S. Kim, Science 2015, 349, 723.
- 61Q. Wei, X. H. Peng, Appl. Phys. Lett. 2014, 104, 372.
- 62J. Guan, W. Song, L. Yang, D. Tománek, Phys. Rev. B 2016, 94, 045414.
- 63X. Ling, S. Huang, E. H. Hasdeo, L. Liang, W. M. Parkin, Y. Tatsumi, A. R. T. Nugraha, A. A. Puretzky, P. M. Das, B. G. Sumpter, D. B. Geohegan, J. Kong, R. Saito, M. Drndic, V. Meunier, M. S. Dresselhaus, Nano Lett. 2016, 16, 2260.
- 64F. Xia, H. Wang, Y. Jia, Nat. Commun. 2014, 5, 4458.
- 65Y. Li, Z. Hu, S. Lin, S. K. Lai, W. Ji, S. P. Lau, Adv. Funct. Mater. 2017, 27, 1600986.
- 66W. Lu, H. Nan, J. Hong, Y. Chen, C. Zhu, Z. Liang, X. Ma, Z. Ni, C. Jin, Z. Zhang, Nano Res. 2014, 7, 853.
- 67Z. Liu, K. Aydin, Nano Lett. 2016, 16, 3457.
- 68X. Zong, K. Liao, L. Zhang, C. Zhu, X. Jiang, X. Chen, L. Wang, J. Mater. Chem. C 2021, 9, 4418.
- 69J. Wang, A. Rousseau, M. Yang, T. Low, S. Francoeur, S. Kéna-Cohen, Nano Lett. 2020, 20, 3651.
- 70Z. Guo, S. Chen, Z. Wang, Z. Yang, F. Liu, Y. Xu, J. Wang, Y. Yi, H. Zhang, L. Liao, P. K. Chu, X. F. Yu, Adv. Mater. 2017, 29, 1703811.
- 71J. He, D. He, Y. Wang, Q. Cui, M. Z. Bellus, H. Y. Chiu, H. Zhao, ACS Nano 2015, 9, 6436.
- 72S.-i. Narita, S.-i. Terada, S. Mori, K. Muro, Y. Akahama, S. Endo, J. Phys. Soc. Jpn. 1983, 52, 3544.
- 73M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, A. Castellanos-Gomez, Nano Lett. 2014, 14, 3347.
- 74D. Xiang, C. Han, J. Wu, S. Zhong, Y. Liu, J. Lin, X. A. Zhang, W. Ping Hu, B. Ozyilmaz, A. H. Neto, A. T. Wee, W. Chen, Nat. Commun. 2015, 6, 6485.
- 75Y. J. Xu, C. L. Liu, C. Guo, Q. Yu, W. L. Guo, W. Lu, X. S. Chen, L. Wang, K. Zhang, Nano Energy 2020, 70, 104518.
- 76B. Liu, M. Köpf, A. N. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, C. Zhou, Adv. Mater. 2015, 27, 4423.
- 77Y. Liu, H. Wang, S. Wang, Y. Wang, Y. Wang, Z. Guo, S. Xiao, Y. Yao, Q. Song, H. Zhang, K. Xu, Adv. Opt. Mater. 2020, 8, 1901526.
- 78H. Hu, Z. Shi, K. Khan, R. Cao, W. Liang, A. K. Tareen, Y. Zhang, W. Huang, Z. Guo, X. Luo, H. Zhang, J. Mater. Chem. A 2020, 8, 5421.
- 79S. Lange, P. Schmidt, T. Nilges, Inorg. Chem. Front. 2007, 46, 4028.
- 80Y. Xu, X. Shi, Y. Zhang, H. Zhang, Q. Zhang, Z. Huang, X. Xu, J. Guo, H. Zhang, L. Sun, Z. Zeng, A. Pan, K. Zhang, Nat. Commun. 2020, 11, 1330.
- 81C. Chen, Y. Yin, R. Zhang, Q. Yuan, Y. Xu, Y. Zhang, J. Chen, Y. Zhang, C. Li, J. Wang, J. Li, L. Fei, Q. Yu, Z. Zhou, H. Zhang, R. Cheng, Z. Dong, X. Xu, A. Pan, K. Zhang, J. He, Nat. Mater. 2023, 22, 717.
- 82I. Shirotani, Mol. Cryst. Liq. Cryst. 2011, 86, 203.
10.1080/00268948208073686 Google Scholar
- 83N. Higashitarumizu, T. Kawashima, T. Smart, R. Yalisove, C. Y. Ho, M. Madsen, D. C. Chrzan, M. C. Scott, R. Jeanloz, H. Yusa, A. Javey, Nano Lett. 2024, 24, 3104.
- 84Y. Yi, X.-F. Yu, W. Zhou, J. Wang, P. K. Chu, Mater. Sci. Eng. R 2017, 120, 1.
- 85Y. Maruyama, S. Suzuki, K. Kobayashi, S. Tanuma, Physica B+C 1981, 105, 99.
- 86A. Brown, S. Rundqvist, Acta Crystallogr. 1965, 19, 684.
- 87A. Buryakov, F. Zainullin, D. Khusyanov, D. Abdulaev, V. Nozdrin, E. Mishina, Opt. Eng. 2021, 60, 082013.
- 88J. B. Smith, D. Hagaman, H. F. Ji, Nanotechnology 2016, 27, 215602.
- 89J. R. Brent, N. Savjani, E. A. Lewis, S. J. Haigh, D. J. Lewis, P. O'Brien, Chem. Commun. 2014, 50, 13338.
- 90J. Kang, J. D. Wood, S. A. Wells, J. H. Lee, X. Liu, K. S. Chen, M. C. Hersam, ACS Nano 2015, 9, 3596.
- 91M. Fortin-Deschenes, F. Xia, Nat. Mater. 2023, 22, 681.
- 92X. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, H. Zhang, Adv. Funct. Mater. 2017, 27, 1606834.
- 93H. Qiao, Z. Huang, X. Ren, S. Liu, Y. Zhang, X. Qi, H. Zhang, Adv. Opt. Mater. 2019, 8, 1900765.
- 94S. Jeon, J. Jia, J. H. Ju, S. Lee, Appl. Phys. Lett. 2019, 115, 183102.
- 95M. Huang, M. Wang, C. Chen, Z. Ma, X. Li, J. Han, Y. Wu, Adv. Mater. 2016, 28, 3481.
- 96M. Xu, Y. Gu, R. Peng, N. Youngblood, M. Li, Appl. Phys. B 2017, 123, 130.
- 97I. Shirotani, J. Mikami, T. Adachi, Y. Katayama, K. Tsuji, H. Kawamura, O. Shimomura, T. Nakajima, Phys. Rev. B 1994, 50, 16274.
- 98M. Zhong, H. Meng, Z. Ren, L. Huang, J. Yang, B. Li, Q. Xia, X. Wang, Z. Wei, J. He, Nanoscale 2021, 13, 10579.
- 99M. Dai, H. Chen, R. Feng, W. Feng, Y. Hu, H. Yang, G. Liu, X. Chen, J. Zhang, C.-Y. Xu, P. Hu, ACS Nano 2018, 12, 8739.
- 100J. Guo, S. Li, Z. He, Y. Li, Z. Lei, Y. Liu, W. Huang, T. Gong, Q. Ai, L. Mao, Y. He, Y. Ke, S. Zhou, B. Yu, Appl. Surf. Sci. 2019, 483, 1037.
- 101Y. Yu, Y. Zhang, Physics 2017, 46, 205.
- 102N. Deng, H. Tian, J. Zhang, J. Jian, F. Wu, Y. Shen, Y. Yang, T.-L. Ren, J. Semicond. 2021, 42, 081001.
- 103X. Chen, X. Lu, B. Deng, O. Sinai, Y. Shao, C. Li, S. Yuan, V. Tran, K. Watanabe, T. Taniguchi, D. Naveh, L. Yang, F. Xia, Nat. Commun. 2017, 8, 1672.
- 104L. Ye, H. Li, Z. Chen, J. Xu, ACS Photonics 2016, 3, 692.
- 105R. Tian, X. Gan, C. Li, X. Chen, S. Hu, L. Gu, D. Van Thourhout, A. Castellanos-Gomez, Z. Sun, J. Zhao, Light: Sci. Appl. 2022, 11, 101.
- 106X. Liu, W. Wang, F. Yang, S. Feng, Z. Hu, J. Lu, Z. Ni, Sci. China Inform. Sci. 2021, 64, 140404.
- 107H. Jiao, X. Wang, Y. Chen, S. Guo, S. Wu, C. Song, S. Huang, X. Huang, X. Tai, T. Lin, H. Shen, H. Yan, W. Hu, X. Meng, J. Chu, Y. Zhang, J. Wang, Sci. Adv. 2022, 8, eabn1811.
- 108Q. Zhou, Q. Chen, Y. Tong, J. Wang, Angew. Chem. Int. Ed. Engl. 2016, 55, 11437.
- 109Y. Zhao, H. Wang, H. Huang, Q. Xiao, Y. Xu, Z. Guo, H. Xie, J. Shao, Z. Sun, W. Han, X. F. Yu, P. Li, P. K. Chu, Angew. Chem. Int. Ed. Engl. 2016, 55, 5003.
- 110J. D. Wood, S. A. Wells, D. Jariwala, K. S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, M. C. Hersam, Nano Lett. 2014, 14, 6964.
- 111Y. Cao, A. Mishchenko, G. L. Yu, E. Khestanova, A. P. Rooney, E. Prestat, A. V. Kretinin, P. Blake, M. B. Shalom, C. Woods, J. Chapman, G. Balakrishnan, I. V. Grigorieva, K. S. Novoselov, B. A. Piot, M. Potemski, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, R. V. Gorbachev, Nano Lett. 2015, 15, 4914.
- 112L. Viti, J. Hu, D. Coquillat, A. Politano, C. Consejo, W. Knap, M. S. Vitiello, Adv. Mater. 2016, 28, 7390.
- 113Y. Chen, Y. Wang, Z. Wang, Y. Gu, Y. Ye, X. Chai, J. Ye, Y. Chen, R. Xie, Y. Zhou, Z. Hu, Q. Li, L. Zhang, F. Wang, P. Wang, J. Miao, J. Wang, X. Chen, W. Lu, P. Zhou, W. Hu, Nat. Electron. 2021, 4, 357.
- 114N. Youngblood, C. Chen, S. J. Koester, M. Li, Nat. Photonics 2015, 9, 247.
- 115J. Wang, H. Fang, X. Wang, X. Chen, W. Lu, W. Hu, Small 2017, 13, 1700894.
- 116L. Huang, W. C. Tan, L. Wang, B. Dong, C. Lee, K. W. Ang, ACS Appl. Mater. Interfaces 2017, 9, 36130.
- 117B.-W. Su, X.-K. Li, X.-Q. Jiang, W. Xin, K.-X. Huang, D.-K. Li, H.-W. Guo, Z.-B. Liu, J.-G. Tian, ACS Appl. Mater. Interfaces 2018, 10, 35615.
- 118Y. Liu, Y. Cai, G. Zhang, Y. W. Zhang, K. W. Ang, Adv. Funct. Mater. 2017, 27, 1604638.
- 119X. Yu, S. Zhang, H. Zeng, Q. J. Wang, Nano Energy 2016, 25, 34.
- 120F. Wang, K. Pei, Y. Li, H. Li, T. Zhai, Adv. Mater. 2021, 33, 2005303.
- 121X. Liu, M. S. Choi, E. Hwang, W. J. Yoo, J. Sun, Adv. Mater. 2022, 34, 2108425.
- 122Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang, X. Duan, Nature 2018, 557, 696.
- 123Y. Pan, Y. Wang, M. Ye, R. Quhe, H. Zhong, Z. Song, X. Peng, D. Yu, J. Yang, J. Shi, J. Lu, Chem. Mater. 2016, 28, 2100.
- 124H. Kim, S. Z. Uddin, D. H. Lien, M. Yeh, N. S. Azar, S. Balendhran, T. Kim, N. Gupta, Y. Rho, C. P. Grigoropoulos, K. B. Crozier, A. Javey, Nature 2021, 596, 232.
- 125J. Quereda, P. San-Jose, V. Parente, L. Vaquero-Garzon, A. J. Molina-Mendoza, N. Agrait, G. Rubio-Bollinger, F. Guinea, R. Roldan, A. Castellanos-Gomez, Nano Lett. 2016, 16, 2931.
- 126Z. Zhang, L. Li, J. Horng, N. Z. Wang, F. Yang, Y. Yu, Y. Zhang, G. Chen, K. Watanabe, T. Taniguchi, X. H. Chen, F. Wang, Y. Zhang, Nano Lett. 2017, 17, 6097.
- 127Y. Xue, X. Wu, K. Chen, J. Wang, L. Liu, Opt. Mater. Express 2022, 13, 272.
10.1364/OME.477278 Google Scholar
- 128A. Serpengüzel, S. Tsao, G. Badenes, H. Lim, W. Zhang, G. C. Righini, M. Razeghi, Proc. SPIE 2007, 6593, 6593U1.
10.1117/12.724173 Google Scholar
- 129I. Kimukin, N. Biyikli, T. Kartaloglu, O. Aytur, E. Ozbay, IEEE J. Sel. Top. Quant. 2004, 10, 766.
- 130B. W. Jia, K. H. Tan, W. K. Loke, S. Wicaksono, K. H. Lee, S. F. Yoon, ACS Photonics 2018, 5, 1512.
- 131G. Lee, J.-Y. Lee, G.-H. Lee, J. Kim, J. Mater. Chem. C 2016, 4, 6234.
- 132J. Mao, O. Ortiz, J. Wang, A. Malinge, A. Badia, S. Kena-Cohen, Nanoscale 2020, 12, 19814.
- 133X. Yang, X. Zhou, L. Li, N. Wang, R. Hao, Y. Zhou, H. Xu, Y. Li, G. Zhu, Z. Zhang, J. Wang, Q. Feng, Small 2023, 19, 2206590.
- 134K. Tang, C. Yan, X. Du, G. Rao, M. Zhang, Y. Wang, X. Wang, J. Xiong, Adv. Opt. Mater. 2023, 12, 2301350.
10.1002/adom.202301350 Google Scholar
- 135Q. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. Deng, C. Li, S. J. Han, H. Wang, Q. Xia, T. P. Ma, T. Mueller, F. Xia, Nano Lett. 2016, 16, 4648.
- 136Y. Liu, T. Sun, W. L. Ma, W. Z. Yu, S. B. Nanjunda, S. J. Li, Q. L. Bao, Chin. Opt. Lett. 2018, 16, 020002.
- 137M. Yang, T. Miao, Q. Mi, Y. Lu, N. Zhang, M. Liu, H. Guo, T. Liu, H. Hu, L. Wang, IEEE T. Electron Dev. 2023, 70, 1739.
- 138S. N. S. Yadav, P. L. Chen, C. H. Liu, T. J. Yen, Adv. Mater. Interfaces 2023, 10, 2202403.
- 139M. R. Lien, N. Wang, J. Wu, A. Soibel, S. D. Gunapala, H. Wang, M. L. Povinelli, Nano Lett. 2022, 22, 8704.
- 140S. Wang, A. Ashokan, S. Balendhran, W. Yan, B. C. Johnson, A. Peruzzo, K. B. Crozier, P. Mulvaney, J. Bullock, ACS Nano 2023, 17, 11771.
- 141J. Miao, B. Song, Z. Xu, L. Cai, S. Zhang, L. Dong, C. Wang, Small 2018, 14, 1702082.
- 142P. Wu, L. Ye, L. Tong, P. Wang, Y. Wang, H. Wang, H. Ge, Z. Wang, Y. Gu, K. Zhang, Y. Yu, M. Peng, F. Wang, M. Huang, P. Zhou, W. Hu, Light: Sci. Appl. 2022, 11, 6.
- 143A. Rogalski, J. Antoszewski, L. Faraone, J. Appl. Phys. 2009, 105, 4.
- 144M. Engel, M. Steiner, P. Avouris, Nano Lett. 2014, 14, 6414.
- 145Y. Ma, B. Dong, J. Wei, Y. Chang, L. Huang, K.-W. Ang, C. Lee, Adv. Opt. Mater. 2020, 8, 2000337.
- 146C. Liu, J. Guo, L. Yu, Y. Xiang, H. Xiang, J. Li, D. Dai, ACS Photonics 2022, 9, 1764.
- 147S. Yuan, D. Naveh, K. Watanabe, T. Taniguchi, F. Xia, Nat. Photonics 2021, 15, 601.
- 148Y. Q. Bie, G. Grosso, M. Heuck, M. M. Furchi, Y. Cao, J. Zheng, D. Bunandar, E. Navarro-Moratalla, L. Zhou, D. K. Efetov, T. Taniguchi, K. Watanabe, J. Kong, D. Englund, P. Jarillo-Herrero, Nat. Nanotechnol. 2017, 12, 1124.
- 149P. R. Griffiths, Science 1983, 222, 297.
- 150Y. Liu, Z. Qiu, A. Carvalho, Y. Bao, H. Xu, S. J. R. Tan, W. Liu, A. H. Castro Neto, K. P. Loh, J. Lu, Nano Lett. 2017, 17, 1970.
- 151K. Du, Q. Lv, Z. Liang, G. Liu, S. Hussain, J. Liu, G. Qiao, ACS Appl. Nano Mater 2023, 6, 3159.
- 152X. Zhang, W. Zhang, Mater. Today Phys. 2024, 43, 101396.