Broadband and Reconfigurable Dual-Mode Optical Switch with Low Power-Consumption
Shijie Sun
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorShangrong Li
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorYuanhua Che
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorTianhang Lian
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorYushu Fu
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorCorresponding Author
Xibin Wang
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
E-mail: [email protected]
Search for more papers by this authorDaming Zhang
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorShijie Sun
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorShangrong Li
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorYuanhua Che
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorTianhang Lian
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorYushu Fu
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorCorresponding Author
Xibin Wang
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
E-mail: [email protected]
Search for more papers by this authorDaming Zhang
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012 China
Search for more papers by this authorAbstract
Mode-division multiplexing (MDM) technology, as a new way to increase the communication capacity of a single wavelength carrier, has attracted increasing attention. As a fundamental building block for MDM communication systems, multimode optical switch is playing an important role for routing the increasingly complex network. However, it is still very challenging to achieve a multimode optical switch with high flexibility and low power-consumption in a large bandwidth. Here, a 1 × 2 dual-mode optical switch is proposed and experimentally demonstrated, where the E11 and E21 modes can be switched output from either of the two output ports simultaneously or individually with low power-consumption. For the proposed dual-mode optical switch, three asymmetric Y-junctions are used as mode (de)multiplexers, two Mach–Zehnder interferometers form a single-mode switch matrix, and a 2 × 2 multimode interferometer is used as the waveguide crossing. The device is fabricated with simple photolithography and wet-etching methods. The measurement results show that the driving powers of the device are lower than 8.4 mW, and the crosstalks are less than −12.4 dB in the wavelength range of 1500–1600 nm. By implementing the dynamic control of resources between the guided modes, the proposed device can greatly improve the flexibility and efficiency of reconfigurable MDM networks.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
lpor202400427-sup-0001-SuppMat.docx4.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Ding, Q. Cen, K. Xu, M. Li, Y. Dai, Photon. Res. 2022, 10, 1915.
10.1364/PRJ.461637 Google Scholar
- 2S. Li, Z. Qin, Z. Liu, X. Yang, Y. Xu, J. Lightwave Technol. 2023, 41, 5763.
10.1109/JLT.2023.3267613 Google Scholar
- 3X. Wang, Z. Chen, M. Yin, W. Wang, Z. Li, W. Ni, F. Li, J. Lightwave Technol. 2023, 41, 2323.
10.1109/JLT.2022.3231247 Google Scholar
- 4J. Li, L. Zhang, M. Zhang, H. Su, I. Li, S. Ruan, H. Liang, Adv. Opt. Mater. 2020, 8, 2000068.
- 5T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, H. I. Smith, Nat. Photon. 2007, 1, 57.
- 6D. Dai, L. Liu, S. Gao, D. Xu, S. He, Laser Photon. Rev. 2013, 7, 303.
- 7Z. Dang, Z. Deng, T. Chen, Z. Ding, Z. Zhang, J. Lightwave Technol. 2023, 41, 2451.
- 8Y. Ruan, X. Qian, H. Wang, Z. Hu, Y. Yang, J. Wang, X. Shen, Y. Wang, Photon. Res. 2023, 11, 569.
- 9P. Dong, IEEE J. Sel. Top. Quant. 2016, 22, 6100609.
- 10Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, W. Shi, Opt. Lett. 2018, 43, 1554.
- 11L. Luo, N. Ophir, C. Chen, L. Gabrielli, C. Poitras, K. Bergmen, M. Lipson, Nat. Commun. 2014, 5, 3069.
- 12X. Ma, Y. Li, J. Han, Opt. Lett. 2023, 48, 1256.
- 13J. Oh, K. Li, J. Yang, W. T. Chen, M. Li, P. Dainese, F. Capasso, ACS Photonics 2022, 9, 929.
- 14Y. Ding, J. Li, S. Li, Y. Qin, Z. Zhang, X. Wang, Y. Guo, X. Meng, H. Du, J. Lightwave Technol. 2023, 41, 739.
10.1109/JLT.2022.3220024 Google Scholar
- 15W. Zhao, X. Yi, Y. Peng, L. Zhang, H. Chen, D. Dai, Laser Photon. Rev. 2022, 16, 2100623.
- 16H. Wen, C. Xia, A. M. Velázquez-Benítez, N. Chand, J. E. A. Lopez, B. Huang, H. Liu, H. Zheng, P. Sillard, X. Liu, J. Lightwave Technol. 2016, 34, 1990.
10.1109/JLT.2015.2503121 Google Scholar
- 17Y. Tian, J. Li, Z. Wu, Y. Chen, P. Zhu, R. Tang, Q. Mo, Y. He, Z. Chen, Opt. Express. 2017, 25, 16603.
- 18Y. Liu, K. Xu, S. Wang, W. Shen, H. Xie, Y. Wang, S. Xiao, Y. Yao, J. Du, Z. He, Q. Song, Nat. Commun. 2019, 10, 3263.
- 19J. Wang, S. He, D. Dai, Laser Photon. Rev. 2014, 8, L18.
- 20C. Sun, Y. Yu, G. Chen, X. Zhang, Opt. Lett. 2016, 41, 5511.
- 21J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, R. M. Osgood, Opt. Lett. 2013, 38, 1854.
- 22C. Li, D. Liu, D. Dai, Nanophotonics 2019, 8, 227.
- 23S. Li, L. Cai, D. Gao, J. Dong, J. Hou, C. Yang, S. Chen, X. Zhang, Photon. Res. 2020, 8, 1843.
- 24B. Wu, Y. Yu, X. Zhang, Opt. Express 2020, 28, 14705.
- 25W. Chang, L. Lu, X. Ren, D. Li, Z. Pan, M. Cheng, D. Liu, M. Zhang, Photon. Res. 2018, 6, 660.
- 26H. Xu, Y. Shi, Opt. Lett. 2016, 41, 5381.
- 27H. D. T. Linh, T. C. Dung, K. Tanizawa, IEEE J. Sel. Top. Quant. 2020, 26, 1.
- 28W. Jin, K. S. Chiang, IEEE J. Sel. Top. Quant. 2020, 26, 4500906.
- 29Y. Zhang, Y. He, Q. Zhu, C. Qiu, Y. Su, Photon. Res. 2017, 5, 521.
- 30C. Sun, W. Wu, Y. Yu, X. Zhang, G. T. Reed, Opt. Lett. 2018, 43, 3658.
- 31M. W. Pruessner, B. J. Roxworthy, D. A. Kozak, N. F. Tyndall, W. S. Rabinovich, T. H. Stievater, Opt. Lett. 2023, 48, 427.
- 32U. J. Al-Hamdani, Q. M. A. Hassan, A. M. Zaidan, H. A. Sultan, K. A. Hussain, C. A. Emshary, Z. T. Y. Alabdullah, J. Mol. Liq. 2022, 361, 119676.
- 33B. Stern, X. Zhu, C. Chen, L. Tzuang, J. Cardenas, K. Bergman, M. Lipson, Optica 2015, 2, 530.
- 34B. G. Lee, A. Biberman, J. Chan, K. Bergman, IEEE J. Sel. Top. Quant. 2010, 16, 6.
- 35Y. Xiong, R. B. Priti, O. Liboiron-Ladouceur, Optica 2017, 4, 1098.
- 36R. B. Priti, O. Liboiron-Ladouceur, J. Lightwave Technol. 2019, 37, 3851.
- 37H. Jia, S. L. Yang, T. Zhou, S. Z. Shao, X. Fu, L. Zhang, L. Yang, Nanophotonics 2019, 8, 889.
- 38C. Sun, W. Wu, Y. Yu, G. Chen, X. Zhang, X. Chen, D. J. Thomson, G. T. Reed, Nanophotonics 2018, 7, 1571.
- 39S. Sun, W. Tong, E. Yang, B. Wu, R. Zhang, N. Zhu, B. Hu, D. Gao, J. Dong, X. Zhang, Laser Photon. Rev. 2024, 18, 2400213.
10.1002/lpor.202400213 Google Scholar
- 40C. Sun, Y. Ding, Z. Li, W. Qi, Y. Yu, X. Zhang, ACS Photon. 2020, 7, 2037.
- 41W. Zhao, R. Liu, Y. Peng, X. Yi, H. Chen, D. Dai, Nanophotonics 2022, 11, 2293.
- 42C. D. Truong, D. N. T. Hang, H. Chandrahalim, M. T. Trinh, Sci. Rep. 2021, 11, 897.
- 43B. Wu, W. Zhang, H. Zhou, J. Dong, D. Huang, P. K. A. Wai, X. Zhang, PhotoniX 2023, 4, 37.
- 44A. Li, J. Dong, J. Wang, Z. Cheng, J. S. Ho, D. Zhang, J. Wen, X. Zhang, C. T. Chan, A. Alù, C. Qiu, L. Chen, Phys. Rev. Lett. 2020, 125, 187403.
- 45Z. Dang, T. Chen, Z. Ding, Z. Liu, X. Zhang, X. Jiang, Z. Zhang, Opt. Lett. 2021, 46, 3025.
- 46S. H. Oh, K. H. Yoon, K. S. Kim, J. Kim, O. Kwon, D. K. Oh, Y. O. Noh, J. K. Seo, H. J. Lee, IEEE J. Sel. Top. Quant. 2011, 17, 1534.
- 47Q. Huang, W. Jin, K. S. Chiang, Opt. Lett. 2017, 42, 4877.
- 48Q. Huang, J. He, Z. Zheng, X. Zhou, J. Lightwave Technol. 2024, 42, 1566.
- 49W. K. Zhao, K. X. Chen, J. Y. Wu, IEEE Photon. Technol. Lett. 2019, 31, 169.
- 50Q. Song, K. Chen, Z. Hu, J. Lightwave Technol. 2020, 38, 1358.
- 51Z. Chang, K. S. Chiang, Opt. Lett. 2017, 42, 3868.
- 52H. Jia, T. Zhou, L. Zhang, J. Ding, X. Fu, L. Yang, Opt. Express. 2017, 25, 20698.
- 53Y. Zhang, R. Zhang, Q. Zhu, Y. Yuan, Y. Su, J. Lightwave Technol. 2020, 38, 215.
- 54L. Yang, T. Zhou, H. Jia, S. Yang, J. Ding, X. Fu, L. Zhang, Optica 2018, 5, 180.
- 55Y. Liu, X. Wang, J. Sun, H. Gu, X. Sun, C. Chen, F. Wang, D. Zhang, Opt. Commun. 2015, 356, 79.
- 56X. Zi, L. Wang, K. Chen, K. S. Chiang, IEEE Photon. Technol. Lett. 2018, 30, 618.
- 57W. K. Zhao, J. Feng, K. X. Chen, K. S. Chiang, Opt. Lett. 2018, 43, 2082.
- 58R. B. Priti, G. Zhang, O. Liboiron-Ladouceur, Opt. Express 2019, 27, 14199.
- 59X. Wang, K. S. Chiang, Opt. Express 2019, 27, 35385.
- 60G. Zhang, H. R. Mojaver, A. Das, O. Liboiron-Ladouceur, Opt. Lett. 2020, 45, 811.
- 61S. Sun, X. Sun, T. Lian, Y. Che, M. Zhu, Q. Yu, Y. Xie, X. Wang, D. Zhang, Opt. Express 2023, 31, 12049.