Spin-Selective Trifunctional Metasurfaces for Deforming Versatile Nondiffractive Beams along the Optical Trajectory
Tianyue Li
National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093 China
Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093 China
Search for more papers by this authorYun Chen
Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an, Shanxi, 710049 China
School of Science, Huzhou University, Huzhou, Zhejiang, 313000 China
Search for more papers by this authorBoyan Fu
National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093 China
Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093 China
Search for more papers by this authorMengjiao Liu
National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093 China
Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093 China
Search for more papers by this authorCorresponding Author
Jinwen Wang
Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an, Shanxi, 710049 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHong Gao
Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an, Shanxi, 710049 China
Search for more papers by this authorCorresponding Author
Shuming Wang
National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093 China
Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093 China
Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education, Nanjing University, Nanjing, Jiangsu, 210093 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorShining Zhu
National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093 China
Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093 China
Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education, Nanjing University, Nanjing, Jiangsu, 210093 China
Search for more papers by this authorTianyue Li
National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093 China
Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093 China
Search for more papers by this authorYun Chen
Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an, Shanxi, 710049 China
School of Science, Huzhou University, Huzhou, Zhejiang, 313000 China
Search for more papers by this authorBoyan Fu
National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093 China
Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093 China
Search for more papers by this authorMengjiao Liu
National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093 China
Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093 China
Search for more papers by this authorCorresponding Author
Jinwen Wang
Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an, Shanxi, 710049 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorHong Gao
Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an, Shanxi, 710049 China
Search for more papers by this authorCorresponding Author
Shuming Wang
National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093 China
Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093 China
Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education, Nanjing University, Nanjing, Jiangsu, 210093 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorShining Zhu
National Laboratory of Solid-State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093 China
Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093 China
Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education, Nanjing University, Nanjing, Jiangsu, 210093 China
Search for more papers by this authorAbstract
Exploring and taming the diffraction phenomena and divergence of light are foundational to enhancing comprehension of nature and developing photonic technologies. Despite the numerous types of nondiffraction beam generation technologies, the 3D deformation and intricate wavefront shaping of structures during propagation have yet to be studied through the lens of nanophotonic devices. Herein, the dynamic conversion of a circular Airy beam (CAB) to a Bessel beam with a single-layer spin-selective metasurface is demonstrated. This spatial transformation arises from the interplay of 1D local and 2D global phases, facilitating the 3D control of non-diffractive light fields. An additional overall phase gradient and orbital angular momentum are introduced, which effectively altering the propagation direction and transverse fields of complex amplitude beams along the optical path. The manifested samples exhibit superior defect resistance, laying a crucial application in micro/nanolithography technologies. This approach expands the in-plane spin-selective mechanism and leverages the out-of-plane propagation dimension, allowing for integrated high-resolution imaging, on-chip optical micromanipulation, and micro/nanofabrication within a versatile nanophotonic platform.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
lpor202301372-sup-0001-SuppMat.pdf1.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Forbes, M. de Oliveira, M. R. Dennis, Nat. Photonics 2021, 15, 253.
- 2M. Mazilu, D. J. Stevenson, F. Gunn-Moore, K. Dholakia, Laser Photonics Rev. 2010, 4, 529.
- 3J. Durnin, J. Opt. Soc. Am. 1987, 4, 651.
- 4R. M. Power, J. Huisken, Nat. Methods 2017, 14, 360.
- 5H. Jia, X. Yu, Y. Yang, X. Zhou, S. Yan, C. Liu, M. Lei, B. Yao, J Biophotonics 2019, 12, e201800094.
- 6R. Cao, J. Zhao, L. Li, L. Du, Y. Zhang, Y. Luo, L. Jiang, S. Davis, Q. Zhou, A. de la Zerda, L. V. Wang, Nat. Photonics 2022, 17, 89.
- 7M. Pahlevaninezhad, Y. W. Huang, M. Pahlevani, B. Bouma, M. J. Suter, F. Capasso, H. Pahlevaninezhad, Nat. Photonics 2022, 16, 203.
- 8O. Brzobohatý, V. Karásek, M. Šiler, L. Chvátal, T. Čižmár, P. Zemánek, Nat. Photonics 2013, 7, 123.
- 9S. Xia, A. Ramachandran, S. Xia, D. Li, X. Liu, L. Tang, Y. Hu, D. Song, J. Xu, D. Leykam, S. Flach, Z. Chen, Phys. Rev. Lett. 2018, 121, 263902.
- 10F. Xin, M. Flammini, F. Di Mei, L. Falsi, D. Pierangeli, A. J. Agranat, E. DelRe, Phys. Rev. Appl. 2019, 11, 024011.
- 11M. Duocastella, C. B. Arnold, Laser Photonics Rev. 2012, 6, 607.
- 12G. A. Siviloglou, J. Broky, A. Dogariu, D. N. Christodoulides, Phys. Rev. Lett. 2007, 99, 213901.
- 13G. A. Siviloglou, D. N. Christodoulides, Opt. Lett. 2007, 32, 979.
- 14N. K. Efremidis, Z. Chen, M. Segev, D. N. Christodoulides, Optica 2019, 6, 686.
- 15S. Jia, J. C. Vaughan, X. Zhuang, Nat. Photonics 2014, 8, 302.
- 16T. Vettenburg, H. I. Dalgarno, J. Nylk, C. Coll-Llado, D. E. Ferrier, T. Cizmar, F. J. Gunn-Moore, K. Dholakia, Nat. Methods 2014, 11, 541.
- 17J. Wang, X. Hua, C. Guo, W. Liu, S. Jia, Optica 2020, 7, 790.
- 18R. Ivaskeviciute-Povilauskiene, P. Kizevicius, E. Nacius, D. Jokubauskis, K. Ikamas, A. Lisauskas, N. Alexeeva, I. Matulaitiene, V. Jukna, S. Orlov, L. Minkevicius, G. Valusis, Light: Sci. Appl. 2022, 11, 326.
- 19J. Baumgartl, M. Mazilu, K. Dholakia, Nat. Photonics 2008, 2, 675.
- 20Y. Liang, S. Yan, Z. Wang, R. Li, Y. Cai, M. He, B. Yao, M. Lei, Rep Prog Phys 2020, 83, 032401.
- 21P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, Z. Chen, Opt. Lett. 2011, 36, 2883.
- 22J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, G. A. Ramı́rez, E. Tepichı́n, R. M. Rodrı́guez-Dagnino, S. Chávez-Cerda, G. H. C. New, Opt. Commun. 2001, 195, 35.
- 23C. Alpmann, R. Bowman, M. Woerdemann, M. Padgett, C. Denz, Opt. Express 2010, 18, 26084.
- 24A. Bencheikh, S. Chabou, O. C. Boumeddine, H. Bekkis, A. Benstiti, L. Beddiaf, W. Moussaoui, J Opt Soc Am A 2020, 37, C7.
10.1364/JOSAA.395940 Google Scholar
- 25L. Li, T. Li, S. M. Wang, C. Zhang, S. N. Zhu, Phys. Rev. Lett. 2011, 107, 126804.
- 26A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, Y. S. Kivshar, Phys. Rev. Lett. 2011, 107, 116802.
- 27N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Science 2011, 334, 333.
- 28S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou, Nat. Mater. 2012, 11, 426.
- 29W. T. Chen, M. Khorasaninejad, A. Y. Zhu, J. Oh, R. C. Devlin, A. Zaidi, F. Capasso, Light: Sci. Appl. 2017, 6, e16259.
- 30S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, D. P. Tsai, Nat. Commun. 2017, 8, 187.
- 31S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. Wang, S. Zhu, D. P. Tsai, Nat. Nanotechnol. 2018, 13, 227.
- 32T. Li, X. Li, S. Yan, X. Xu, S. Wang, B. Yao, Z. Wang, S. Zhu, Phys. Rev. Appl. 2021, 15, 014059.
- 33Q. Fan, W. Zhu, Y. Liang, P. Huo, C. Zhang, A. Agrawal, K. Huang, X. Luo, Y. Lu, C. Qiu, H. J. Lezec, T. Xu, Nano Lett. 2019, 19, 1158.
- 34J. Wen, L. Chen, B. Yu, J. B. Nieder, S. Zhuang, D. Zhang, D. Lei, ACS Nano 2021, 15, 1030.
- 35T. Li, J. J. Kingsley-Smith, Y. Hu, X. Xu, S. Yan, S. Wang, B. Yao, Z. Wang, S. Zhu, Opt. Lett. 2023, 48, 255.
- 36T. Badloe, J. Seong, J. Rho, Nano Lett. 2023, 23, 6958.
- 37A. H. Dorrah, N. A. Rubin, M. Tamagnone, A. Zaidi, F. Capasso, Nat. Commun. 2021, 12, 6249.
- 38J. Yang, R. Zhao, Y. Li, H. Xiong, Y. Li, X. Li, J. Li, Y. Wang, L. Huang, Adv. Opt. Mater. 2023, 11, 2202896.
- 39C.-Y. Hwang, K.-Y. Kim, B. Lee, Opt. Express 2011, 19, 7356.
- 40I. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, Z. Chen, Opt. Lett. 2011, 38, 3675.
10.1364/OL.36.003675 Google Scholar
- 41Y. Jiang, X. Zhu, W. Yu, H. Shao, W. Zheng, X. Lu, Opt. Express 2015, 23, 29834.
- 42A. Chong, W. H. Renninger, D. N. Christodoulides, F. W. Wise, Nat. Photonics 2010, 4, 103.
- 43J. Pan, H. Wang, Y. Shen, X. Fu, Q. Liu, Appl. Phys. Lett. 2022, 121, 141102.
- 44P. Zhang, Q. Guo, H. Wu, Z. Gong, B. Nie, Y. Hu, Z. Chen, J. Xu, Phys. Rev. Lett. 2023, 131, 087201.
- 45M. Born, E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, United Kingdom 1999.
10.1017/CBO9781139644181 Google Scholar
- 46N. Chen, C. Wang, W. Heidrich, Opt. Express 2022, 30, 37727.
- 47P. Li, S. Liu, T. Peng, G. Xie, X. Gan, J. Zhao, Opt. Express 2014, 22, 7598.
- 48G. Lao, Z. Zhang, D. Zhao, Opt. Express 2016, 24, 18082.
- 49H. Wang, L. Tang, J. Ma, H. Hao, X. Zheng, D. Song, Y. Hu, Y. Li, Z. Chen, APL Photonics 2020, 5, 016102.
- 50X. Fang, H. Ren, K. Li, H. Luan, Y. Hua, Q. Zhang, X. Chen, M. Gu, Adv. Opt. Photonics 2021, 13, 772.
- 51M. Khorasaninejad, F. Capasso, Science 2017, 358, eaam8100.
- 52J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, F. Capasso, Phys. Rev. Lett. 2017, 118, 113901.
- 53T. Li, X. Xu, B. Fu, S. Wang, B. Li, Z. Wang, S. Zhu, Photonics Research 2021, 9, 1062.