Photochromic 3D Optical Storage: Laser-Induced Regulation of Localized Optical Basicity of Glass
Xuefeng Li
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorYaman Wu
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Hang Lin
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGengxu Chen
National & Local United Engineering Laboratory of Flat Panel Display Technology, Institute of Optoelectronic Display, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian, 350108 P. R. China
Search for more papers by this authorYanxue Hao
National & Local United Engineering Laboratory of Flat Panel Display Technology, Institute of Optoelectronic Display, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian, 350108 P. R. China
Search for more papers by this authorPengfei Wang
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorShisheng Lin
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorJu Xu
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorYao Cheng
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Yuansheng Wang
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXuefeng Li
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorYaman Wu
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Hang Lin
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGengxu Chen
National & Local United Engineering Laboratory of Flat Panel Display Technology, Institute of Optoelectronic Display, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian, 350108 P. R. China
Search for more papers by this authorYanxue Hao
National & Local United Engineering Laboratory of Flat Panel Display Technology, Institute of Optoelectronic Display, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian, 350108 P. R. China
Search for more papers by this authorPengfei Wang
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorShisheng Lin
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorJu Xu
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorYao Cheng
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Yuansheng Wang
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
3D optical storage, spatially expanding storage capacity, is regarded as an effective and economical way to break the diffraction limit of the conventional 2D optical storage. In this study, a new kind of 3D optical storage medium, i.e., vanadium ions (V5+) doped sodium borate glass, is developed, showing intriguing spatially-selected photochromism (PC) upon laser driven excitation. Significantly, a brand-new PC mechanism of V5+-aggregation regulated by localized optical basicity (OB) of glass is proposed and demonstrated. The developed PC glass is responsive to a low-price desktop-level mini-laser to encode optical information, yields unique twofold decoding modes in bright- and dark-fields, and shows good data erasibility. 3D volumetric optical storage with a memory density of ≈480 Mbit cm−3 is realized with the aid of an advanced femtosecond laser micro-machining system. The findings suggest a novel design approach to fabricate 3D PC glass in terms of manipulating the scale of optical basicity in glass, hopefully stimulating the development of new multi-dimensional PC optical storage media.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
lpor202300744-sup-0001-SuppMat.pdf1.5 MB | Supporting Information |
lpor202300744-sup-0002-MovieS1.mp43.3 MB | Supplemental Movie 1 |
lpor202300744-sup-0003-MovieS2.avi37.5 MB | Supplemental Movie 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Gu, Q. Zhang, S. Lamon, Nat. Rev. Mater. 2016, 1, 16070.
- 2M. Tu, H. Reinsch, S. Rodríguez-Hermida, R. Verbeke, T. Stassin, W. Egger, M. Dickmann, B. Dieu, J. Hofkens, I. F. J. Vankelecom, N. Stock, R. Ameloot, Angew. Chem., Int. Ed. 2019, 58, 2423.
- 3D. Genovese, A. Aliprandi, E. A. Prasetyanto, M. Mauro, M. Hirtz, H. Fuchs, Y. Fujita, H. Uji-I, S. Lebedkin, M. Kappes, L. De Cola, Adv. Funct. Mater. 2016, 26, 5271.
- 4H. Wang, Y. Lei, L. Wang, M. Sakakura, Y. Yu, G. Shayeganrad, P. G. Kazansky, Laser Photonics Rev. 2022, 16, 2100563.
- 5X. Lu, L. Deng, S. A. Saslow, H. Liu, C. J. Benmore, B. P. Parruzot, J. T. Reiser, S. H. Kim, J. V. Ryan, J. D. Vienna, J. Du, J. Phys. Chem. B 2021, 125, 12365.
- 6Y. Lei, H. Wang, L. Skuja, B. Kühn, B. Franz, Y. Svirko, P. G. Kazansky, Laser Photonics Rev. 2023, 17, 2200978.
- 7Y. Zhuang, L. Wang, Y. Lv, T.-L. Zhou, R.-J. Xie, Adv. Funct. Mater. 2018, 28, 1705769.
- 8S. Lin, H. Lin, C. Ma, Y. Cheng, S. Ye, F. Lin, R. Li, J. Xu, Y. Wang, Light: Sci. Appl. 2020, 9, 22.
- 9J. M. Lee, M. B. Koo, S. W. Lee, H. Lee, J. Kwon, Y. H. Shim, S. Y. Kim, K. T. Kim, Nat. Commun. 2020, 11, 56.
- 10H. Zhang, Y. Fan, P. Pei, C. Sun, L. Lu, F. Zhang, Angew. Chem., Int. Ed. 2019, 58, 10153.
- 11X. Li, T.-H. Lan, C.-H. Tien, M. Gu, Nat. Commun. 2012, 3, 998.
- 12Y. Song, H. Zhao, Y. Zi, J. Qiu, Z. Song, X. Bai, J. Liao, Z. Yang, ACS Energy Lett. 2023, 8, 2232.
- 13D. Gao, Z. Wang, Q. Pang, Q. Kuang, F. Gao, X. Zhang, S. Yun, X. Wang, Adv. Opt. Mater. 2023, 11, 2300303.
- 14D. Liu, L. Yuan, Y. Jin, H. Wu, Y. Lv, G. Xiong, G. Ju, L. Chen, S. Yang, Y. Hu, ACS Appl. Mater. Interfaces 2019, 11, 35023.
- 15C. Liao, H. Wu, H. Wu, L. Zhang, G.-H. Pan, Z. Hao, F. Liu, X.-J. Wang, J. Zhang, Laser Photonics Rev. 2023, 17, 2300016.
- 16Y. Zhang, L. Luo, K. Li, W. Li, Y. Hou, J. Phys. D: Appl. Phys. 2018, 51, 365102.
- 17Y. Yang, L. Guan, G. Gao, ACS Appl. Mater. Interfaces 2018, 10, 13975.
- 18H. Sun, X. Li, Y. Zhu, X. Wang, Q. Zhang, X. Hao, J. Mater. Chem. C 2019, 7, 5782.
- 19X. Li, L. Guan, Y. Li, H. Sun, Q. Zhang, X. Hao, J. Mater. Chem. C 2020, 8, 15685.
- 20P. Li, Z. Zhang, X. Gao, H. Sun, D. Peng, H. Zou, Q. Zhang, X. Hao, Chem. Eng. J. 2022, 435, 134801.
- 21X. Li, H. Lin, S. Lin, P. Li, P. Wang, J. Xu, Y. Cheng, Q. Zhang, Y. Wang, Laser Photonics Rev. 2023, 17, 2200734.
- 22J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, K. Hirao, Angew. Chem., Int. Ed. 2004, 43, 2230.
- 23Z. Hu, X. Huang, Z. Yang, J. Qiu, Z. Song, J. Zhang, G. Dong, Light: Sci. Appl. 2021, 10, 140.
- 24H. Zhao, Y. Cun, X. Bai, D. Xiao, J. Qiu, Z. Song, J. Liao, Z. Yang, ACS Energy Lett. 2022, 7, 2060.
- 25E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, E. Mazur, Opt. Lett. 1996, 21, 2023.
- 26J. Zhang, M. Gecevicius, M. Beresna, P. G. Kazansky, Phys. Rev. Lett. 2014, 112, 033901.
- 27Q. Zhang, Z. Xia, Y.-B. Cheng, M. Gu, Nat. Commun. 2018, 9, 1183.
- 28A. A. Osipov, L. M. Osipova, Phys. B 2010, 405, 4718.
- 29J. Bei, G. Qian, X. Liang, S. Yuan, Y. Yang, G. Chen, Mater. Res. Bull. 2007, 42, 1195.
- 30V. Dimitrov, T. Komatsu, J. Non-Cryst. Solids 2013, 382, 18.
- 31S. Liu, G. Zhao, H. Ying, J. Wang, G. Han, J. Non-Cryst. Solids 2008, 354, 956.
- 32J. A. Duffy, M. D. Ingram, J. Non-Cryst. Solids 1976, 21, 373.
- 33Y. Fujimoto, T. Yanagida, S. Wakahara, S. Suzuki, S. Kurosawa, A. Yoshikawa, Radiat. Meas. 2013, 55, 124.
- 34S. Mao, D. A. Hakeem, S. Su, H. Wen, W. Song, Optik 2021, 229, 166225.
- 35S. Nishio, M. Kakihana, Chem. Mater. 2002, 14, 3730.
- 36T. Srikumar, C. Srinvasa Rao, Y. Gandhi, N. Venkatramaiah, V. Ravikumar, N. Veeraiah, J. Phys. Chem. Solids 2011, 72, 190.
- 37W. A. Weyl, A. G. Pincus, A. E. Badger, J. Am. Ceram. Soc. 1939, 22, 374.
- 38C. Siligardi, A. M. Ferrari, C. Leonelli, Phys. Chem. Glasses 2002, 43, 97.
- 39U. G. Işsever, G. Kilic, M. Peker, T. Ünaldi, A. Ş. Aybek, J. Mater. Sci.: Mater. Electron. 2019, 30, 15156.
- 40G. Silversmit, D. Depla, H. Poelman, G. B. Marin, R. De Gryse, J. Electron Spectrosc. Relat. Phenom. 2004, 135, 167.
- 41M. A. Ashrafi, M. Ranjbar, H. Kalhori, H. Salamati, Thin Solid Films 2017, 621, 220.
- 42H. A. Elbatal, N. A. Ghoneim, Nucl. Instrum. Methods Phys. Res., Sect. B 1997, 124, 81.
- 43H. Li, H. Lin, W. Chen, L. Luo, J. Non-Cryst. Solids 2006, 352, 3069.
- 44L. Zhang, W. Wang, S. Xie, K. Zhang, I. Sohn, J. Non-Cryst. Solids 2017, 460, 113.
- 45Y. A. Barykina, N. I. Medvedeva, V. G. Zubkov, D. G. Kellerman, J. Alloys Compd. 2017, 709, 1.
- 46Z. Feng, S. Jiang, X. Luo, J. Shen, Y. Pang, L. Li, X. Zhou, Opt. Mater. 2016, 62, 348.
- 47T. K. Le, M. Kang, S. W. Han, S. W. Kim, RSC Adv. 2018, 8, 41317.
- 48A. K. Yadav, P. Singh, RSC Adv. 2015, 5, 67583.
- 49W. L. Konijnendijk, J. M. Stevels, J. Non-Cryst. Solids 1975, 18, 307.
- 50D. Maniu, I. Ardelean, T. Iliescu, Mater. Lett. 1995, 25, 147.
- 51G. Sangeetha, K. C. Sekhar, A. Hameed, G. Ramadevudu, M. N. Chary, M. Shareefuddin, J. Non-Cryst. Solids 2021, 563, 120784.
- 52T. Yano, N. Kunimine, S. Shibata, M. Yamane, J. Non-Cryst. Solids 2003, 321, 147.
- 53M. Subhadra, P. Kistaiah, Vib. Spectrosc. 2012, 62, 23.
- 54G. Padmaja, P. Kistaiah, J. Phys. Chem. A 2009, 113, 2397.
- 55H. W. Nesbitt, G. M. Bancroft, G. S. Henderson, R. Ho, K. N. Dalby, Y. Huang, Z. Yan, J. Non-Cryst. Solids 2011, 357, 170.
- 56A. Paul, J. M. Rusin, J. Am. Ceram. Soc. 1969, 52, 657.
- 57M. Sakakura, M. Terazima, Phys. Rev. B 2005, 71, 024113.