: Differentiable Holography
Corresponding Author
Ni Chen
Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721 USA
E-mail: [email protected]
Search for more papers by this authorCongli Wang
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720 USA
Search for more papers by this authorWolfgang Heidrich
Visual Computing Center, King Abdullah University of Science and Technology, Jeddah, Thuwal, 23955 Saudi Arabia
Search for more papers by this authorCorresponding Author
Ni Chen
Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721 USA
E-mail: [email protected]
Search for more papers by this authorCongli Wang
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720 USA
Search for more papers by this authorWolfgang Heidrich
Visual Computing Center, King Abdullah University of Science and Technology, Jeddah, Thuwal, 23955 Saudi Arabia
Search for more papers by this authorAbstract
Over the past decade, the field of holography has gained significant ground due to advances in computational imaging. However, the utilization of computational tools is hampered by the mismatch between experimental setups and the conceptual model. Differentiable holography (), a novel framework for automatically self-calibrating experimental imperfections in inverse holographic imaging, is presented here. The technique is demonstrated on auto-focused complex field imaging from a single intensity-only inline hologram.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1S. Kadlecek, J. Sebby, R. Newell, T. G. Walker, Opt. Lett. 2001, 26, 137.
- 2T. P. Almeida, A. Palomino, S. Lequeux, V. Boureau, O. Fruchart, I. L. Prejbeanu, B. Dieny, D. Cooper, APL Mater. 2022, 10, 061104.
- 3Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, M. S. Feld, Opt. Express 2009, 17, 266.
- 4D. Gabor, Nature 1948, 161, 777.
- 5D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, S. Lim, Opt. Express 2009, 17, 13040.
- 6W. Zhang, L. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, G. Jin, Phys. Rev. Lett. 2018, 121, 093902.
- 7T.-C. Poon, Digital Holography and Three-Dimensional Display, Springer, Berlin 2006.
10.1007/0-387-31397-4 Google Scholar
- 8L. Huang, T. Liu, X. Yang, Y. Luo, Y. Rivenson, A. Ozcan, ACS Photonics 2021, 8, 1763.
- 9E. N. Leith, J. Upatnieks, J. Opt. Soc. Am. A 1962, 52, 1123.
- 10I. Yamaguchi, T. Zhang, Opt. Lett. 1997, 22, 1268.
- 11T.-C. Poon, M. H. Wu, K. Shinoda, Y. Suzuki, Proc. IEEE 1996, 84, 753.
- 12F. Momey, L. Denis, T. Olivier, C. Fournier, J. Opt. Soc. Am. A 2019, 36, D62.
10.1364/JOSAA.36.000D62 Google Scholar
- 13Z. Ren, Z. Xu, E. Y. Lam, Optica 2018, 5, 337.
- 14F. Niknam, H. Qazvini, H. Latifi, Sci. Rep. 2021, 11, 10903.
- 15Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, A. Ozcan, Light: Sci. Appl. 2017, 7, 17141.
- 16E. Bostan, R. Heckel, M. Chen, M. Kellman, L. Waller, Optica 2020, 7, 559.
- 17F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten, G. Barbastathis, G. Situ, Light: Sci. Appl. 2020, 9, 77.
- 18H. Chen, L. Huang, T. Liu, A. Ozcan, arXiv:2209.08288, 2023.
- 19T. Zeng, E. Y. Lam, IEEE Trans. Comput. Imaging 2021, 7, 1080.
- 20N. Chen, L. Cao, T. Poon, B. Lee, E. Y. Lam, Adv. Phys. Res. 2023, 2, 6.
10.1002/apxr.202200118 Google Scholar
- 21M. R. Hughes, Appl. Opt. 2020, 60, A1.
- 22N. Chen, C. Wang, W. Heidrich, Laser Photonics Rev. 2021, 15, 2100008.
- 23M. Lee, H. Hugonnet, Y. Park, Optica 2022, 9, 177.
- 24M. Chen, D. Ren, H.-Y. Liu, S. Chowdhury, L. Waller, Optica 2020, 7, 394.
- 25D. E. Rumelhart, G. E. Hinton, R. J. Williams, Nature 1986, 323, 533.
- 26Y. Yu, M. Abadi, P. Barham, E. Brevdo, M. Burrows, A. Davis, J. Dean, S. Ghemawat, T. Harley, P. Hawkins, M. Isard, M. Kudlur, R. Monga, D. Murray, X. Zheng, Dynamic control flow in large-scale machine learning, Tensorflow.org, 2015, DOI: https://www.tensorflow.org.
- 27J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, Q. Zhang, JAX: Composable transformations of Python+NumPy programs, GitHub, Inc., 2018, DOI: http://github.com/google/jax.
- 28J. Bezanson, A. Edelman, S. Karpinski, V. B. Shah, SIAM Rev. 2017, 59, 65.
- 29B. Heo, S. Chun, S. J. Oh, D. Han, S. Yun, G. Kim, Y. Uh, J.-W. Ha, arXiv:2006.08217, 2020.
- 30A. Griewank, Evaluating Derivatives, Society for Industrial and Applied Mathematics, Philadelphia, PA 2008.
- 31M. Blennow, Mathematical Methods for Physics and Engineering, CRC Press, Boca Raton, FL 2018.
10.1201/b22209 Google Scholar
- 32Y. Peng, S. Choi, N. Padmanaban, G. Wetzstein, ACM Trans. Graph. 2020, 39, 185.
- 33C. Chen, B. Lee, N.-N. Li, M. Chae, D. Wang, Q.-H. Wang, B. Lee, Opt. Express 2021, 29, 15089.
- 34R. Remmert, in Theory of Complex Functions, Springer, New York, NY 1991, pp. 9–44.
- 35J. A. Palmer, K. Kreutz-Delgado, S. Makeig, arXiv:0906.4835, 2009.
- 36N. Chen, C. Wang, W. Heidrich, Front. Phys. 2022, 3, 835962.
- 37Y. Baek, Y. Park, Nat. Photonics 2021, 15, 354.
- 38A. Zhou, W. Wang, N. Chen, E. Y. Lam, B. Lee, G. Situ, Opt. Express 2018, 26, 23661.
- 39H. Wang, W. Tahir, J. Zhu, L. Tian, Opt. Express 2021, 29, 17159.
- 40Z. Ren, N. Chen, E. Y. Lam, Opt. Lett. 2017, 42, 1720.
- 41Y. Zhang, Z. Huang, S. Jin, L. Cao, Appl. Opt. 2023, 62, D23.
- 42T. Latychevskaia, H.-W. Fink, Phys. Rev. Lett. 2007, 98, 23.
10.1103/PhysRevLett.98.233901 Google Scholar
- 43J. W. Goodman, Introduction to Fourier optics, W. H. Freeman, Englewood, Colo 2017.
- 44N. Chen, C. Wang, W. Heidrich, Opt. Express 2022, 30, 37727.
- 45T. Latychevskaia, H.-W. Fink, Appl. Opt. 2015, 54, 2424.
- 46Y. Gao, L. Cao, Light: Adv. Manuf. 2023, 4, 6.
- 47S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu, PeerJ 2014, 2, e453.