Real-Time Investigation of Ultrafast Dynamics through Time-Stretched Dispersive Fourier Transform in Mode-Locked Fiber Lasers
Kuen Yao Lau
Institute of Light+X Science and Technology, Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorYudong Cui
College of Optical Science and Engineering and State Key Lab of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Xiaofeng Liu
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jianrong Qiu
College of Optical Science and Engineering and State Key Lab of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorKuen Yao Lau
Institute of Light+X Science and Technology, Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211 China
Search for more papers by this authorYudong Cui
College of Optical Science and Engineering and State Key Lab of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Xiaofeng Liu
School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Jianrong Qiu
College of Optical Science and Engineering and State Key Lab of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Real-time investigation in mode-locked fiber lasers (MLFLs) is important to understand the ultrafast dynamics before, during, and after the formation of stable laser pulses. However, the experimental measurement of these dynamics is restricted by the resolution of conventional oscilloscopes. The development of a time-stretched dispersive Fourier transform (TS-DFT) technique provides the shot-to-shot measurement of mapping the spectral information of an ultrashort optical pulse into time-stretched waveform in the MLFL. Here, the recent progress and development of various fascinating dynamics in the MLFL, including the study of birth, evolution, and extinction process in MLFL, different types of MLFL, and complex motion dynamics in MLFL, have been reviewed. The issues and challenges encountered in this research area are discussed and several recommendations are suggested to overcome these problems. The integration of the TS-DFT technique is expected to provide deeper insight into the real-time investigation of various dynamics in the MLFL by displaying fascinating phenomenon and revealing unexplored trajectories.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1T. Udem, R. Holzwarth, T. W. Hänsch, Nature 2002, 416, 233.
- 2T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D'Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, T. Udem, Science 2008, 321, 1335.
- 3C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, F. Ö. Ilday, Nature 2016, 537, 84.
- 4D. Strickland, G. Mourou, Opt. Commun. 1985, 56, 219.
- 5M. Fridman, M. Nixon, E. Ronen, A. A. Friesem, N. Davidson, Opt. Lett. 2010, 35, 526.
- 6X. Yi, Q. F. Yang, K. Y. Yang, K. Vahala, Nat. Commun. 2018, 9, 3565.
- 7X. Liu, Y. Cui, Adv. Photonics 2019, 1, 016003.
- 8N. Seymour-Smith, P. Blythe, M. Keller, W. Lange, Rev. Sci. Instrum. 2010, 81, 075109.
- 9S. Yun, G. Tearney, B. Bouma, B. Park, J. de Boer, Opt. Express 2003, 11, 3598.
- 10A. C. Scott, F. Y. F. Chu, D. W. Mclaughlin, Proc. IEEE 1973, 61, 1443.
- 11N. Jiménez, A. Mehrem, R. Picó, L. M. García-Raffi, V. J. Sánchez-Morcillo, C. R. Phys. 2016, 17, 543.
- 12H. A. Haus, W. S. Wong, Rev. Mod. Phys. 1996, 68, 423.
- 13A. Hasegawa, Chaos 2000, 10, 475.
- 14M. Bilal, S.-U. Rehman, J. Ahmad, J. Ocean Eng. Sci. 2022, https://doi.org/10.1016/j.joes.2022.05.027.
10.1016/j.joes.2022.05.027 Google Scholar
- 15N. N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, J. Opt. Soc. Am. B 1998, 15, 515.
- 16G. Herink, F. Kurtz, B. Jalali, D. R. Solli, C. Ropers, Science 2017, 356, 50.
- 17D. R. Solli, G. Herink, B. Jalali, C. Ropers, Nat. Photonics 2012, 6, 463.
- 18J. Peng, S. Boscolo, Z. Zhao, H. Zeng, Sci. Adv. 2019, 5, 1.
- 19K. Zhao, X. Xiao, C. Yang, Photonics Res. 2021, 9, 289.
- 20S. Chouli, P. Grelu, Phys. Rev. A 2010, 81, 063829.
- 21R. Xia, Y. Luo, P. P. Shum, W. Ni, Y. Liu, H. Q. Lam, Q. Sun, X. Tang, L. Zhao, Opt. Lett. 2020, 45, 1551.
- 22Y. Wang, C. Wang, F. Zhang, J. Guo, C. Ma, W. Huang, Y. Song, Y. Ge, J. Liu, H. Zhang, Rep. Prog. Phys. 2020, 83, 116401.
- 23L. Huang, Y. Zhang, X. Liu, Nanophotonics 2020, 9, 2731.
- 24A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, B. Jalali, Nat. Photonics 2017, 11, 341.
- 25K. Goda, B. Jalali, Nat. Photonics 2013, 7, 102.
- 26C. Lei, B. Guo, Z. Cheng, K. Goda, Appl. Phys. Rev. 2016, 3, 011102.
- 27T. Godin, L. Sader, A. K. Kashi, P.-H. Hanzard, A. Hideur, D. J. Moss, R. Morandotti, G. Genty, J. M. Dudley, A. Pasquazi, M. Kues, B. Wetzel, Adv. Phys. X 2022, 7, 2067487.
- 28M. Suzuki, O. Boyraz, H. Asghari, B. Jalali, Sci. Rep. 2020, 10, 14460.
- 29K. Goda, D. R. Solli, K. K. Tsia, B. Jalali, Phys. Rev. A 2009, 80, 043821.
- 30X. Wei, B. Li, Y. Yu, C. Zhang, K. K. Tsia, K. K. Y. Wong, Opt. Express 2017, 25, 29098.
- 31X. Liu, X. Yao, Y. Cui, Phys. Rev. Lett. 2018, 121, 023905.
- 32H. Liang, X. Zhao, B. Liu, J. Yu, Y. Liu, R. He, J. He, H. Li, Z. Wang, Nanophotonics 2020, 9, 1921.
- 33G. Herink, B. Jalali, C. Ropers, D. R. Solli, Nat. Photonics 2016, 10, 321.
- 34J. Azaña, M. A. Muriel, IEEE J. Quantum Electron. 2000, 36, 517.
- 35E. D. Diebold, N. K. Hon, Z. Tan, J. Chou, T. Sienicki, C. Wang, B. Jalali, Opt. Express 2011, 19, 23809.
- 36S. Yegnanarayanan, P. D. Trinh, B. Jalali, Opt. Lett. 1996, 21, 740.
- 37S. Liu, Y. Chen, L. Huang, T. Cao, X. Qin, H. Ning, J. Yan, K. Hu, Z. Guo, J. Peng, Opt. Lett. 2021, 46, 2376.
- 38M. Hoshikawa, K. Ishii, T. Makino, T. Hashimoto, H. Furukawa, N. Wada, Opt. Rev. 2020, 27, 246.
- 39J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, H. Zeng, Commun. Phys. 2018, 1, 1.
10.1038/s42005-018-0022-7 Google Scholar
- 40A. Bednyakova, S. K. Turitsyn, Phys. Rev. Lett. 2015, 114, 113901.
- 41H. J. Chen, M. Liu, J. Yao, S. Hu, J. B. He, A. P. Luo, Z. C. Luo, W. C. Xu, IEEE Photonics J. 2018, 10, 1501809.
- 42K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, P. Grelu, Phys. Rev. Lett. 2017, 118, 243901.
- 43X. Liu, D. Popa, N. Akhmediev, Phys. Rev. Lett. 2019, 123, 093901.
- 44Y. Cui, X. Liu, Photonics Res. 2019, 7, 423.
- 45Y. S. Cui, Z. K. Dong, L. L. Zhang, J. R. Tian, Y. R. Song, Laser Phys. Lett. 2021, 18, 085104.
- 46A. Chong, W. H. Renninger, F. W. Wise, Opt. Lett. 2007, 32, 2408.
- 47S. K. Turitsyn, B. G. Bale, M. P. Fedoruk, Phys. Rep. 2012, 521, 135.
- 48V. V. Afanasjev, N. Akhmediev, Phys. Rev. E 1996, 53, 6471.
- 49H. J. Chen, M. Liu, J. Yao, S. Hu, J. B. He, A. P. Luo, W. C. Xu, Z. C. Luo, Opt. Express 2018, 26, 2972.
- 50P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, J. M. Dudley, Nat. Photonics 2018, 12, 221.
- 51Y. Cao, L. Gao, S. Wabnitz, H. Ran, L. Kong, T. Zhu, Opt. Laser Technol. 2021, 133, 106512.
10.1016/j.optlastec.2020.106512 Google Scholar
- 52D. Y. Tang, L. M. Zhao, B. Zhao, A. Q. Liu, Phys. Rev. A 2005, 72, 043816.
- 53Z. Zhang, J. Tian, Y. Cui, Y. Wu, Y. Song, Chin. Opt. Lett. 2022, 20, 081402.
10.3788/COL202220.081402 Google Scholar
- 54H. Zhao, G. M. Ma, X. Y. Li, T. J. Li, H. Cui, M. Liu, A. P. Luo, Z. C. Luo, W. C. Xu, Opt. Express 2020, 28, 24550.
- 55D. Mao, Z. He, Y. Zhang, Y. Du, C. Zeng, L. Yun, Z. Luo, T. Li, Z. Sun, J. Zhao, Light: Sci. Appl. 2022, 11, 1.
- 56K. Tamura, E. P. Ippen, H. A. Haus, L. E. Nelson, Opt. Lett. 1993, 18, 1080.
- 57F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, W. G. Clark, Opt. Lett. 2003, 28, 1365.
- 58H. A. Haus, K. Tamura, L. E. Nelson, E. P. Ippen, IEEE J. Quantum Electron. 1995, 31, 591.
- 59D. Han, Z. Hui, J. Xie, K. Ren, J. Gong, F. Zhao, J. Dong, D. Li, X. Xin, Infrared Phys. Technol. 2019, 102, 102984.
- 60F. W. Wise, A. Chong, W. H. Renninger, Laser Photonics Rev. 2008, 2, 58.
- 61X. Wang, X. Ren, J. Peng, X. Shen, K. Huang, M. Yan, H. Zeng, Opt. Express 2019, 27, 2732.
- 62B. Oktem, C. Ülgüdür, F. Ö. Ilday, Nat. Photonics 2010, 4, 307.
- 63C. Lapre, C. Billet, F. Meng, P. Ryczkowski, T. Sylvestre, C. Finot, G. Genty, J. M. Dudley, Sci. Rep. 2019, 9, 13950.
- 64J. M. Dudley, Nat. Photonics 2010, 4, 272.
- 65F. Meng, C. Lapre, C. Billet, G. Genty, J. M. Dudley, Opt. Lett. 2020, 45, 1232.
- 66C. Ma, G. Wu, B. Gao, Y. Wang, J. Liu, H. Zhang, Opt. Laser Technol. 2022, 156, 108486.
10.1016/j.optlastec.2022.108486 Google Scholar
- 67Y. Wang, J. Li, K. Mo, Y. Wang, L. Fei, Y. Liu, Sci. Rep. 2017, 7, 7779.
- 68J. Li, C. Wang, P. Wang, J. Light. Technol. 2022, 40, 5958.
- 69V. A. Ribenek, D. A. Stoliarov, D. A. Korobko, A. A. Fotiadi, Opt. Lett. 2021, 46, 5687.
- 70J. N. Kurtz, SIAM Rev. 2006, 48, 629.
- 71A. B. Grudinin, S. Gray, J. Opt. Soc. Am. B 1997, 14, 144.
- 72X. Liu, M. Pang, Laser Photonics Rev. 2019, 13, 1800333.
- 73A. B. Grudinin, W. H. Loh, V. V. Afanasjev, D. N. Payne, Opt. Lett. 1994, 19, 698.
- 74J. M. Soto-Crespo, N. Akhmediev, P. Grelu, F. Belhache, Opt. Lett. 2003, 28, 1757.
- 75D. A. Korobko, O. G. Okhotnikov, I. O. Zolotovskii, Opt. Lett. 2015, 40, 2862.
- 76R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, O. Gat, Optica 2016, 3, 189.
- 77S. Gray, A. B. Grudinin, W. H. Loh, D. N. Payne, Opt. Lett. 1995, 20, 189.
- 78X. Wang, J. Peng, K. Huang, M. Yan, H. Zeng, Opt. Express 2019, 27, 28808.
- 79J. Zeng, M. Y. Sander, Opt. Lett. 2020, 45, 5.
- 80T. Ideguchi, T. Nakamura, Y. Kobayashi, K. Goda, Optica 2016, 3, 748.
- 81Q. F. Yang, X. Yi, K. Y. Yang, K. Vahala, Nat. Photonics 2017, 11, 560.
- 82S. Mehravar, R. A. Norwood, N. Peyghambarian, K. Kieu, Appl. Phys. Lett. 2016, 108, 231104.
- 83J. M. Jiang, X. J. Chen, Y. X. Gao, M. Liu, Z. A. Bai, A. P. Luo, W. C. Xu, Z. C. Luo, Opt. Laser Technol. 2021, 142, 107196.
- 84Y. Zhou, Y.-X. Ren, J. Shi, K. K. Y. Wong, Photonics Res. 2020, 8, 1566.
- 85Y. Yu, C. Kong, B. Li, J. Kang, Y. X. Ren, Z. C. Luo, K. K. Y. Wong, Opt. Lett. 2019, 44, 4813.
- 86I. Kudelin, S. Sugavanam, M. Chernysheva, Photonics Res. 2020, 8, 776.
- 87K. Yang, T. J. Li, X. D. Li, J. X. Chen, M. Liu, H. Cui, A. P. Luo, W. C. Xu, Z. C. Luo, Opt. Lett. 2021, 46, 2021.
- 88C. Zeng, X. Liu, L. Yun, Opt. Express 2013, 21, 18937.
- 89C. Wang, Y. Li, D. Huang, H. Chen, Y. Shi, F. Li, Phys. Rev. A 2022, 105, 043515.
- 90J. He, P. Wang, R. He, C. Liu, M. Zhou, Y. Liu, Y. Yue, B. Liu, D. Xing, K. Zhu, K. Chang, Z. Wang, Opt. Express 2022, 30, 14218.
- 91Y. Zhou, Y.-X. Ren, J. Shi, K. K. Y. Wong, Adv. Photonics Res. 2022, 3, 2100318.
- 92Y. Zhou, Y.-X. Ren, J. Shi, K. K. Y. Wong, Opt. Lett. 2022, 47, 1968.
- 93G. I. Stegeman, M. Segev, Science 1999, 286, 1518.
- 94M. Stratmann, T. Pagel, F. Mitschke, Phys. Rev. Lett. 2005, 95, 1.
10.1103/PhysRevLett.95.143902 Google Scholar
- 95W. Wang, L. Wang, W. Zhang, Adv. Photonics 2020, 2, 034001.
- 96Z. Q. Wang, K. Nithyanandan, A. Coillet, P. Tchofo-Dinda, P. Grelu, Nat. Commun. 2019, 10, 830.
- 97J. Peng, H. Zeng, Laser Photonics Rev 2018, 12, 1800009.
- 98J. G. Rarity, J. Fluconis, J. Duligall, W. J. Wadsworth, P. S. J. Russell, Opt. Express 2005, 13, 534.
- 99A. Komarov, K. Komarov, F. Sanchez, Phys. Rev. A 2009, 79, 033807.
- 100B. A. Malomed, Phys. Rev. A 1991, 44, 6954.
- 101Y. Wang, F. Leo, J. Fatome, M. Erkintalo, S. G. Murdoch, S. Coen, Optica 2017, 4, 855.
- 102M. Liu, H. Li, A. P. Luo, H. Cui, W. C. Xu, Z. C. Luo, J. Opt. 2018, 20, 034010.
- 103Y. Zhou, Y.-X. Ren, J. Shi, H. Mao, K. K. Y. Wong, Optica 2020, 7, 965.
- 104Y. Zhang, C. Zhao, X. Wu, Y. Meng, J. Ge, IEEE Photonics Technol. Lett. 2022, 34, 583.
- 105J. Peng, H. Zeng, Opt. Lett. 2019, 44, 2899.
- 106J. Li, H. Li, Z. Wang, Z. Zhang, S. Zhang, Y. Liu, Photonics 2022, 9, 489.
10.3390/photonics9070489 Google Scholar
- 107C. Anastassiou, M. Segev, K. Steiglitz, J. A. Giordmaine, M. Mitchell, M. F. Shih, S. Lan, J. Martin, Phys. Rev. Lett. 1999, 82, 2332.
10.1103/PhysRevLett.83.2332 Google Scholar
- 108S. Stalin, R. Ramakrishnan, M. Senthilvelan, M. Lakshmanan, Phys. Rev. Lett. 2019, 122, 043901.
- 109Y. Zhou, Y.-X. Ren, J. Shi, K. K. Y. Wong, Opt. Express 2022, 30, 21931.
- 110Y. Wei, B. Li, X. Wei, Y. Yu, K. K. Y. Wong, Appl. Phys. Lett. 2018, 112, 081104.
- 111J. M. Soto-Crespo, P. Grelu, N. Akhmediev, N. Devine, Phys. Rev. E 2007, 75, 016613.
- 112J. X. Chen, X. Y. Li, T. J. Li, Z. Y. Zhan, M. Liu, C. Li, A. P. Luo, P. Zhou, K. K. Y. Wong, W. C. Xu, Z. C. Luo, Photonics Res. 2021, 9, 873.
- 113J. Peng, Z. Zhao, S. Boscolo, C. Finot, S. Sugavanam, D. V. Churkin, H. Zeng, Laser Photonics Rev. 2021, 15, 2000132.
- 114Y. Luo, Y. Xiang, P. P. Shum, Y. Liu, R. Xia, W. Ni, H. Q. Lam, Q. Sun, X. Tang, Opt. Express 2020, 28, 4216.
- 115H. J. Chen, Y. J. Tan, J. G. Long, W. C. Chen, W. Y. Hong, H. Cui, A. P. Luo, Z. C. Luo, W. C. Xu, Opt. Express 2019, 27, 28507.
- 116C. Lecaplain, P. Grelu, C. Conti, Opt. Lett. 2014, 39, 263.
- 117J. Peng, H. Zeng, Phys. Rev. Appl. 2019, 12, 034052.
- 118C. Lapre, C. Billet, F. Meng, G. Genty, J. M. Dudley, OSA Continuum 2020, 3, 275.
- 119Q. Huang, Z. Huang, Z. Luo, C. Mou, Opt. Lett. 2021, 46, 5683.
- 120L. Q. English, M. Sato, A. J. Sievers, Phys. Rev. B 2003, 67, 024403.
10.1103/PhysRevB.67.024403 Google Scholar
- 121Z. W. Wei, M. Liu, S. X. Ming, A. P. Luo, W. C. Xu, Z. C. Luo, Opt. Lett. 2018, 43, 5965.
- 122Y. Luo, R. Xia, P. P. Shum, W. Ni, Y. Liu, H. Q. Lam, Q. Sun, X. Tang, L. Zhao, Photonics Res. 2020, 8, 884.
- 123F. O. Ilday, F. W. Wise, Opt. Lett. 2002, 27, 1531.
- 124Y. Du, M. Han, P. Cheng, X. Shu, Opt. Lett. 2019, 44, 4087.
- 125D. Turaev, A. G. Vladimirov, S. Zelik, Phys. Rev. Lett. 2012, 108, 263906.
- 126A. Komarov, F. Amrani, A. Dmitriev, K. Komarov, D. Meshcheriakov, F. Sanchez, Phys. Rev. A 2012, 85, 013802.
- 127Z. X. Zhang, M. Luo, J. X. Chen, L. H. Chen, M. Liu, A. P. Luo, W. C. Xu, Z. C. Luo, Opt. Lett. 2022, 47, 1750.
- 128X. Wu, Y. Zhang, J. Song, S. Boscolo, C. Finot, H. Zeng, Nat. Commun. 2022, 13, 5784.
- 129J. M. Soto-Crespo, N. Akhmediev, A. Ankiewicz, Laser Photonics Rev. 2000, 85, 2937.
- 130E. N. Tsoy, N. Akhmediev, Phys. Lett. A 2005, 343, 417.
- 131E. N. Tsoy, A. Ankiewicz, N. Akhmediev, Phys. Rev. E 2006, 73, 36621.
- 132J. M. Soto-Crespo, M. Grapinet, P. Grelu, N. Akhmediev, Phys. Rev. E 2004, 70, 66612.
- 133K. Krupa, T. M. Kardaś, Y. Stepanenko, Laser Photonics Rev. 2022, 16, 2100646.
- 134M. Liu, Z. Wei, H. Li, T. Li, A. Luo, W. Xu, Z. Luo, Laser Photonics Rev. 2020, 14, 1900317.
- 135Z. Wang, A. Coillet, S. Hamdi, Z. Zhang, P. Grelu, Laser Photonics Rev. 2023, 17, 2200298.
10.1002/lpor.202200298 Google Scholar
- 136Y. Du, X. Shu, Opt. Express 2018, 26, 5564.
- 137A. F. J. Runge, N. G. R. Broderick, M. Erkintalo, Optica 2014, 2, 36.
- 138J. Peng, H. Zeng, Commun. Phys. 2019, 2, 1.
10.1038/s42005-019-0134-8 Google Scholar
- 139Z. W. Wei, M. Liu, S. X. Ming, H. Cui, A. P. Luo, W. C. Xu, Z. C. Luo, Opt. Lett. 2020, 45, 531.
- 140Y. Yu, Z.-C. Luo, J. Kang, K. K. Y. Wong, Opt. Lett. 2018, 43, 4132.
- 141K. Krupa, K. Nithyanandan, P. Grelu, Optica 2017, 4, 1239.
- 142S. T. Cundiff, J. M. Soto-Crespo, N. Akhmediev, Phys. Rev. Lett. 2002, 88, 073903.
- 143J. Zeng, M. Y. Sander, Opt. Express 2022, 30, 7894.
- 144D. Rand, I. Glesk, C. Brès, D. A. Nolan, X. Chen, J. Koh, J. W. Fleischer, K. Steiglitz, P. R. Prucnal, Phys. Rev. Lett. 2007, 98, 053902.
- 145Y. Cui, Y. Zhang, Y. Song, L. Huang, L. Tong, J. Qiu, X. Liu, Laser Photonics Rev. 2021, 15, 2000216.
- 146M. Liu, A.-P. Luo, Z.-C. Luo, W.-C. Xu, Opt. Lett. 2017, 42, 330.
- 147V. V. Afanasjev, Opt. Lett. 1995, 20, 270.
- 148D. R. Solli, C. Ropers, P. Koonath, B. Jalali, Nature 2007, 450, 1054.
- 149A. Zaviyalov, O. Egorov, R. Iliew, F. Lederer, Phys. Rev. A 2012, 85, 013828.
- 150J. M. Soto-Crespo, P. Grelu, N. Akhmediev, Phys. Rev. E 2011, 84, 016604.
- 151C. Lecaplain, P. Grelu, Phys. Rev. A 2014, 90, 013805.
- 152Z. Liu, S. Zhang, F. W. Wise, Opt. Lett. 2015, 40, 1366.
- 153M. Liu, A.-P. Luo, W.-C. Xu, Z.-C. Luo, Opt. Lett. 2016, 41, 3912.
- 154M. Luo, Z. X. Zhang, M. Liu, A. P. Luo, W. C. Xu, Z. C. Luo, Opt. Express 2022, 30, 22143.
- 155Z. R. Cai, M. Liu, S. Hu, J. Yao, A. P. Luo, Z. C. Luo, W. C. Xu, IEEE J. Sel. Top. Quantum Electron. 2017, 23, 20.
- 156A. F. J. Runge, C. Aguergaray, N. G. R. Broderick, M. Erkintalo, Opt. Lett. 2014, 39, 319.
- 157A. F. J. Runge, C. Aguergaray, N. G. R. Broderick, M. Erkintalo, Opt. Lett. 2013, 38, 4327.
- 158W. H. Renninger, A. Chong, F. W. Wise, Phys. Rev. A 2008, 77, 023814.
- 159Z. C. Luo, J. Q. Kang, M. Liu, C. Li, C. H. Kong, Y. Yu, K. K. Wong, IEEE Photonics Technol. Lett. 2018, 30, 1803.
- 160R.-Q. Xu, Y.-R. Song, Z.-K. Dong, K. Li, J. Tian, Appl. Opt. 2017, 56, 1674.
- 161Z. Wang, C. Ma, Y. Song, J. Liu, H. Zhu, Y. Duan, H. Zhang, Opt. Express 2020, 28, 39463.
- 162Z. Wang, K. Nithyanandan, A. Coillet, P. Tchofo-Dinda, P. Grelu, Phys. Rev. Res. 2020, 2, 013101.
- 163A. Martinez, Z. Sun, Nat. Photonics 2013, 7, 842.
- 164X. Bao, H. Mu, Y. Chen, P. Li, L. Li, S. Li, K. Qasim, Y. Zhang, H. Zhang, Q. Bao, J. Phys. D: Appl. Phys. 2018, 51, 375106.
- 165Y. I. Jhon, J. Koo, B. Anasori, M. Seo, J. H. Lee, Y. Gogotsi, Y. M. Jhon, Adv. Mater. 2017, 29, 1702496.
- 166K. Zhao, C. Gao, X. Xiao, C. Yang, Opt. Lett. 2020, 45, 4040.
- 167S. Xu, A. Turnali, M. Y. Sander, Sci. Rep. 2022, 12, 6841.
- 168S. Kivisto, J. Puustinen, M. Guina, O. G. Okhotnikov, E. M. Dianov, Electron. Lett. 2005, 44, 1456.
10.1049/el:20089831 Google Scholar
- 169E. M. Dianov, Light: Sci. Appl. 2012, 1, e12.
- 170R. Gumenyuk, J. Puustinen, A. V. Shubin, I. A. Bufetov, E. M. Dianov, O. G. Okhotnikov, Opt. Lett. 2013, 38, 4005.
- 171T. Noronen, M. Melkumov, D. Stolyarov, V. F. Khopin, E. Dianov, O. G. Okhotnikov, Opt. Lett. 2015, 40, 2217.
- 172A. Khegai, M. Melkumov, S. Firstov, K. Riumkin, Y. Gladush, S. Alyshev, A. Lobanov, V. Khopin, F. Afanasiev, A. G. Nasibulin, E. Dianov, Opt. Express 2018, 26, 23911.
- 173J. Huang, M. Pang, X. Jiang, W. He, P. S. Russell, Opt. Express 2019, 27, 26392.
- 174J. Zou, C. Dong, H. Wang, T. Du, Z. Luo, Light: Sci. Appl. 2020, 9, 61.
- 175Q. Ruan, X. Xiao, J. Zou, H. Wang, S. Fan, T. Li, J. Li, Z. Dong, Z. Cai, Z. Luo, Laser Photonics Rev. 2022, 16, 2100678.
- 176H. Sun, L. Wang, J. Zou, Q. Ruan, Y. Ding, C. Dong, Z. Dong, Z. Luo, J. Light. Technol. 2022, 40, 191.
- 177J. Zou, J. Hong, Z. Zhao, Q. Li, Q. Ruan, H. Wang, Y. Bu, X. Guan, M. Zhou, Z. Feng, Z. Luo, Adv. Photonics 2022, 4, 056001.
- 178B. H. Kolner, IEEE J. Quantum Electron. 1994, 30, 1951.
- 179Y. Zhang, L. Huang, Y. Cui, X. Liu, Opt. Lett. 2020, 45, 4835.
- 180P. Suret, R. E. Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj, S. Bielawski, Nat. Commun. 2016, 7, 13136.
- 181M. Närhi, B. Wetzel, C. Billet, S. Toenger, T. Sylvestre, J. M. Merolla, R. Morandotti, F. Dias, G. Genty, J. M. Dudley, Nat. Commun. 2016, 7, 13675.
- 182Y. Zhang, Y. Cui, L. Huang, L. Tong, X. Liu, Opt. Lett. 2020, 45, 6246.
- 183Y. Zhang, S. Luo, B. Zhang, Y. Cui, Q. Ling, Z. Yu, D. Chen, Opt. Laser Technol. 2022, 153, 108286.
- 184B. Li, J. Kang, S. Wang, Y. Yu, P. Feng, K. K. Y. Wong, Opt. Lett. 2019, 44, 4351.
- 185A. Klein, G. Masri, H. Duadi, K. Sulimany, O. Lib, H. Steinberg, S. A. Kolpakov, M. Fridman, Optica 2018, 5, 774.
- 186X. Wu, J. Peng, S. Boscolo, Y. Zhang, C. Finot, H. Zeng, Laser Photonics Rev. 2022, 16, 2100191.
- 187W. H. Renninger, F. W. Wise, Optica 2014, 1, 101.