Passivation techniques for InAs/GaSb strained layer superlattice detectors
Corresponding Author
Elena A. Plis
Center for High Technology Materials, Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, NM, 87106 USA
Corresponding author: e-mail: [email protected]Search for more papers by this authorMaya Narayanan Kutty
Center for High Technology Materials, Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, NM, 87106 USA
Search for more papers by this authorSanjay Krishna
Center for High Technology Materials, Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, NM, 87106 USA
Search for more papers by this authorCorresponding Author
Elena A. Plis
Center for High Technology Materials, Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, NM, 87106 USA
Corresponding author: e-mail: [email protected]Search for more papers by this authorMaya Narayanan Kutty
Center for High Technology Materials, Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, NM, 87106 USA
Search for more papers by this authorSanjay Krishna
Center for High Technology Materials, Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, NM, 87106 USA
Search for more papers by this authorAbstract
InAs/(In,Ga)Sb Strained Layer Superlattices (SLSs) have made significant progress since they were first proposed as an infrared (IR) sensing material more than three decades ago. The basic material properties of SLS provide a prospective benefit in the realization of IR imagers with suppressed interband tunneling and Auger recombination processes, as well as high quantum efficiency and responsivity. With scaling of single pixel dimensions, the performance of focal plane arrays is strongly dependent on surface effects due to the large pixels’ surface/volume ratio. This article discusses the cause of surface leakage currents and various approaches of their reduction including dielectric passivation, passivation with organic materials (polyimide or various photoresists), passivation by overgrowth of wider bandgap material, and chalcogenide passivation. Performance of SLS detectors passivated by different techniques and operating in various regions of infrared spectrum has been compared.
References
- 1G. A. Sai-Halasz, R. Tsu, and L. Esaki, Appl. Phys. Lett. 30, 651 (1977).
- 2L. Esaki, J. Cryst. Growth 52, 227 (1981).
- 3D.L. Smith and C. Mailhiot, J. Appl. Phys. 62, 2545 (1987).
- 4R. H. Miles, D. H. Chow, J. N. Schulman, and T. C. McGill, Appl. Phys. Lett. 57, 801 (1990).
- 5R. Rehm, M. Walther, J. Schmitz, J. Fleibner, S. Kopta, F. Fuchs, W. Cabanski, and J. Ziegler, J. Cryst. Growth 278, 150 (2005).
- 6Y. Wei, A. Hood, H. Yau, A. Gin, M. Razeghi, M. Z. Tidrow, and V. Nathan, Appl. Phys. Lett. 86, 233106 (2005).
- 7E. Plis, J. B. Rodriguez, H. S. Kim, G. Bishop, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, C. E. Jones, and V. Gopal, Appl Phys. Lett. 91, 133512 (2007).
- 8I. Vurgaftman, E. Aifer, C. Canedy, J. Tischler, J. Meyer, J. Warner, E. Jackson, G. Hildebrandt, and G. Sullivan, Appl. Phys. Lett. 89, 121114 (2006).
- 9D. Z. Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, Appl. Phys. Lett. 95, 023508 (2009).
- 10S. D. Gunapala, D. Z. Ting, C. J. Hill, J. Nguyen, A. Soibel, S. B. Rafol, S. A. Keo, J. M. Mumolo, M. C. Lee, J. K. Liu, and B. Yang, IEEE Photon. Tech. Lett. 22, 1856 (2010).
- 11N. Gautam, H. S. Kim, M. N. Kutty, E. Plis, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 96, 231107 (2010).
- 12P. Y. Delaunay and M. Razeghi, IEEE J Quant Electron 46, 584 (2010).
- 13Y. Wei, A. Gin, M. Razeghi, and G. J. Brown, Appl. Phys. Lett. 81, 3675 (2002).
- 14A. Hood, M. Razeghi, E. Aifer, and G. Brown, Appl. Phys. Lett. 87, 151113 (2005).
- 15J. Rothman, E. D. Borniol, P. Ballet, l. Mollard, S. Gout, M. Fournier, J. P. Chamonal, G. Destefanis, F. Pistone, S. Courtas, X. Lefoule, and P. Tribolet, Proc. of SPIE 7298, 729835 (2009).
- 16J. Peterson, D. Lofgreen, J. Franklin, T. Vang, E. Smith, J. Wehner, I. Kasai, J. Bangs, S. Johnson, and M. Reddy, J. Electron. Mater. 37(9), 1274 (2008).
- 17I. Pivnik, E. Ilan, A. Calalhorra, A. Koifman, I. Vaserman, J. O. Schlesinger, R. Gazit, and I. Hirsh, Proc. of SPIE 7298, 72983K-1 (2009).
10.1117/12.821349 Google Scholar
- 18A. Rogalski, Rep. Progr. Phys. 68, 2267 (2005).
- 19H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors, Springer Series in Optical Sciences (Springer, Berlin, Germany, 2007).
- 20A. Soibel, S. V. Bandara, D. Ting, J. K. Liu, J. Mumolo, S. B. Rafola, W. Johnson, D. Wilson, and S. Gunapala, Inf. Phys. Technol. 52(6), 403 (2009).
- 21A. Nedelcu, V. Gueriaux, A. Bazin, L. Dua, A. Berurier, E. Costard, P. Bois, and X. Marcadet, Inf. Phys. Technol. 52(6), 412 (2009).
- 22M. Walther, R. Rehm, J. Schmitz, F. Rutz, J. Fleissner, and J. Ziegler, Proc. of SPIE 6940, 6940A-1 (2008).
- 23E. R. Youngdale, J. R. Meyer, C. A. Hoffman, F. J. Bartoli, C. H. Grein, P. M. Young, H. Ehrenreich, R. H. Miles, and D. H. Chow, Appl. Phys. Lett. 64, 3160 (1994).
- 24C. H. Grein, M. E. Flatte, H. Ehrenreich, and R. H. Miles, J. Appl. Phys. 77, 4153 (1995).
- 25C. Grein, H. Cruz, M. Flatte, and H. Ehrenreich, Appl. Phys. Lett. 65, 2530 (1994).
- 26M. Kinch, J. Electron. Mater. 29, 809 (2000).
- 27A. Rogalski; Opt. Eng. 42(12), 3498 (2003).
- 28A. Rogalski, Prog. Quantum Electron. 27, 59 (2003).
- 29A. Rogalski, New Ternary Alloy systems for Infrared Detectors (SPIE, Bellingham, Washington, 1994).
- 30A. Ongstad, R. Kaspi, C. Moeller, M. Tilton, D. Gianardi, J. Chavez, and G. Dente, J. Appl. Phys. 89, 2185 (2001).
- 31J. Steinshnider, M. Weimer, R. Kaspi, and G. W. Turner, Phys. Rev. Lett. 85, 2953 (2000).
- 32G. J. Brown, Proc. of SPIE 5783, 65 (2005).
- 33K. Banerjee, S. Ghosh, E. Plis, and S. Krishna, J. Electron. Mater. 39, 2210 (2010).
- 34G. P. Schwartz, Thin Solid Films 103, 3 (1983).
- 35T. Wada and N. Kitamura, J. J. Appl. Phys. 27(4), 686 (1988).
- 36G. Hollinger, R. Skheyta-Kabbani, and M. Gendry, Phys. Rev. B 49, 11159 (1994).
- 37E. Plis, M. N. Kutty, S. Myers, H. S. Kim, N. Gautam, L. R. Dawson, and S. Krishna, Inf. Phys. Technol. 54, 252 (2010).
- 38A. Gin, Y. Wei, J. Bae, A. Hood, J. Nah, and M. Razeghi, Thin Solid Films 447–448, 489 (2004).
- 39R. Rehm, M. Walther, J. Schmitz, J. Fleibner, F. Fuchs, J. Ziegler, and W. Cabanski, Opt.-Electron. Rev. 14, 19 (2006).
- 40E. K. Huang, B. M. Nguyen, D. Hoffman, P. Y. Delaunay, and M. Razeghi, Proc. of SPIE 7222, 72220Z–72220Z–08 (2009).
- 41J. W. Lee, W. T. Lim, I. K. Baek, S. R. Yoo, M. H. Jeon, G. S. Cho, and S. J. Peatron, J. Electron. Mater. 33, 358 (2004).
- 42E. K. W. Huang, S. Hoffman, B. M. Nguyen, P. Y. Delaunay, and M. Razeghi, Appl. Phys. Lett. 94, 053506 (2009).
- 43R. Rehm, M. Walther, F. Fuchs, J. Schmitz, and J. Fleissner, Appl. Phys. Lett. 86, 173501 (2005).
- 44B. M. Nguyen, D. Hoffman, E. K. Huang, P. Y. Delaunay, and M. Razeghi, Appl. Phys. Lett. 93, 123502 (2006).
- 45R. Chaghi, C. Cervera, H. Ait-Kaci, P. Grech, J. B. Rodriguez, and P. Christol, Semicond. Sci. Technol. 24, 065010 (2009).
- 46C. Cervera, J. B. Rodriguez, R. Chaghi, H. Ait-Kaci, and P. Christol, J. Appl. Phys. 160, 024501 (2009).
- 47Y. Chen, A. Moy, S. Xin, K. Mi, and P. P. Chow, Inf. Phys. Technol. 52, 340 (2009).
- 48S. dip Das, S. L. Tan, S. Zhang, Y. L. Goh, C. H. Ting, and J. David, in: Proceedings of the 6th EMRS DTC Technical Conference, Edinburgh 2009, p. B7.
- 49M. N. Kutty, E. Plis, A. Khoshakhlagh, N. Gautam, S. Smolev, Y. D. Sharma, R. L. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, J. Electron. Mater. 39, 2203 (2010).
- 50E. R. Weber, in: Advances in Infrared Photodetectors, edited by S. Gunapala, D. Rhiger, and C. Jagadish, Semiconductors and Semimetals Vol. 84 (Elsevier, San Diego, CA, USA, 2010), p. 38.
- 51M. Sundaram, A. Reisinger, R. Dennis, K. Patnaude, D. Burrows, J. Bundas, K. Beech, and R. Faska, Inf. Phys. Technol. 54, 243 (2011).
- 52J. Nguyen, A. Soibel, D. Z. Y. Ting, C. J. Hill, M. C. Lee, and S. D. Gunapala, Appl Phys. Lett. 97, 051108 (2009).
- 53V. N. Bessolov and M. V. Lebedev, Semiconductors 32, 1141 (1998).
- 54V. Gopal, Semicond. Sci. Technol 11, 1070 (1994).
- 55Y. T. Kim, D. S. Kim, and D. H. Yoon, Thin Solid Films 475, 271 (2005).
- 56J. A. Nolde, R. Stine, E. M. Jackson, C. L. Canedy, I. Vurgaftman, S. I. Maximenko, C. A. Affouda, M. Gonzalez, E. H. Aifer, and J. R. Meyer, Proc. of SPIE 7945, 79451Y-1 (2011).
- 57G. Chen, B. M. Nguyen, A. M. Hoang, E. K. Huang, S. R. Darvish, and M. Razeghi, Appl. Phys. Lett. 99, 183503-1 (2011).
- 58B. M. Nguyen, D. Hoffman, E. K. Huang, P. Y. Delaunay, and M. Razeghi, Appl. Phys. Lett. 93, 123502 (2008).
- 59P. Y. Delaunay, A. Hood, B. M. Nguyen, D. Hoffman, Y. Wei, and M. Razeghi, Appl. Phys. Lett. 91, 091112 (2007).
- 60H. S. Kim, E. Plis, A. Khoshakhlagh, S. Myers, N. Gautam, Y. D. Sharma, L. R. Dawson, S. Krishna, S. J. Lee, and S. K. Noh, Appl. Phys. Lett. 96, 033502 (2010).
- 61J. E. A. DeCuir, J. W. Little, and N. Baril, Proc. of SPIE 8155, 815508-1 (2011).
- 62H. S. Kim, E. Plis, N. Gautam, S. Myers, Y. Sharma, L. R. Dawson, and S. Krishna, Appl Phys. Lett. 97, 143512 (2010).
- 63US Patent No. 4882245, 1989.
- 64A. Agirregabiria, F. J. Blanco, J. Berganzo, M. T. Arroyo, A. Fullaondo, K. Mayora, and J. M. Ruano-Lopez, Lab on a Chip 5, 545 (2005).
- 65Y. Qian, S. Kim, J. Song, and G. P. Nordin, Opt. Express 14, 6020 (2006).
- 66M. Shaw, D. Nawrocki, R. Hurditch, and D. Johnson, Microsyst. Technol. 10, 1 (2003).
- 67A. Hood, P. Y. Delaunay, D. Hoffman, B. M. Nguyen, Y. Wei, and M. Razeghi, Appl Phys. Lett. 90, 233513 (2007).
- 68F. Szmulowicz and G. J. Brown, Inf. Phys. Technol. 53, 305 (2011).
- 69E. H. Aifer, J. H. Warner, C. L. Canedy, I. Vurgaftman, E. M. Jackson, J. G. Tischler, J. R. Meyer, S. P. Powell, K. Olver, and W. E. Tennant, J. Electron. Mater. 39, 1070 (2010).
- 70C. J. Sandroff, M. S. Hegde, and C. C. Chang, J. Vac. Sci. Technol. B 7, 841 (1989).
- 71C. J. Spindt, D. Liu, K. Miyano, P. L. Meissner, T. T. Chiang, T. Kendelewicz, I. Lindau, and W. E. Spicer, Appl. Phys. Lett. 55, 861 (1989).
- 72V. Bessolov, E. Konenkova, and M. Lebedev, Mater. Sci. Eng. B 44, 376 (1997).
- 73D. Paget, A. O. Gusev, and V. L. Berkovits, Phys. Rev. B 53, 4615 (1996).
- 74H. Oigawa, J. Fan, Y. Nannichi, H. Sugahara, and M. Osofhima, Jap. J. Appl. Phys. 30, L322-1 (1991).
- 75D. Petrovykh, M. Yang, and L. Whitman, Surf. Sci. 523, 231 (2003).
- 76M. Perotin, P. Coudray, L. Gouskov, H. Luquet, C. Linares, J. Bonnet, L. Soonckindt, and B. Lambert, J. Electron. Mater. 23, 7 (1994).
- 77P. S. Dutta, K. S. Sangunni, H. L. Bhat, and V. Kumar, Appl. Phys. Lett. 65, 1695 (1994).
- 78S. Basu and P. Barman, J. Vac. Sci. Technol. B 10 (3), 1078 (1992).
- 79V. N. Bessolov, M. V. Lebedev, E. B. Novikov, and B. V. Tsarenkov, J. Vac. Sci.Technol. B 11, 10 (1993).
- 80V. N. Bessolov, Y. V. Zhilyaev, E. V. Konenkova, and M. V. Lebedev, J. Tech. Phys. 43, 983 (1998).
- 81T. Ohno, Surf. Sci. 225, 229 (1991).
- 82T. Ohno and K. Shiraishi, Phys. Rev. B 42, 11194 (1990).
- 83Z. Y. Liu, T. F. Kuech, and D. A. Saulys, Appl. Phys. Lett. 83, 2587 (2003).
- 84Z. Y. Liu, A. A. Gokhale, M. Mavrikakis, D. A. Saulys, and T. F. Kuech, J. Appl. Phys. 96, 4302 (2004).
- 85Z. Y. Liu, B. Hawkins, and T. F. Kuech, J. Vac. Sci. Technol. B 21, 71 (2003).
- 86A. Gin, Y. Wei, A. Hood, A. Bajowala, V. Yazdanpanah, M. Razeghi, and M. Tidrow, Appl. Phys. Lett. 84, 2037 (2004).
- 87Nist X-ray photoelectron spectroscopy database, version 3.5, http://srdata.nist.gov/xps/ (2003), date of last visit: 17 January 2012.
- 88M. R. Ravi, A. DasGupta, and N. DasGupta, J. Cryst. Growth 268, 359 (2004).
- 89R. Stine, E. H. Aifer, L. J. Whitman, and D. Y. Petrovykh, Appl. Surf. Sci. 255, 7121 (2009).
- 90A. Salesse, A. Joullie, P. Calas, J. Nieto, F. Chevrier, Y. Cuminal, G. Ferblantier, and P. Christol, Phys Stat Solidi (c) 4, 1508 (2007).
- 91K. Banerjee, J. Huang, S. Ghosh, R. Xu, C. G. Takoudis, E. Plis, S. Krishna, S. Ketharanathan, and M. Chriss, Proc. of SPIE 8012, 801243 (2011).
- 92E. Plis, J. B. Rodriguez, S. J. Lee, and S. Krishna, Electron. Lett. 42, 1248 (2006).
- 93S. H. Lee, S. H. Bae, H. C. Lee, and C. K. Kim, J. Electron. Mater. 27, 684 (1998).
- 94S. Mallick, K. Banerjee, S. Ghosh, E. Plis, J. B. Rodriguez, S. Krishna, and C. Grein, Appl. Phys. Lett. 91, 241111 (2007).
- 95S. Mallick, K. Banerjee, S. Ghosh, J. B. Rodriguez, and S. Krishna, IEEE Photon. Tech. Lett. 19, 1843 (2007).
- 96K. Banerjee, S. Ghosh, S. Mallick, E. Plis, and S. Krishna, J. Electron. Mater. 38, 1944 (2009).