Soil pathogenic fungal groups and soil nutrient cycling under land use practices in Liupanshan Mountain in China
Corresponding Author
Peng Kang
School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan, Ningxia, China
Correspondence
Peng Kang, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, Ningxia, China.
Email: [email protected]
Search for more papers by this authorYaqing Pan
School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
Search for more papers by this authorYaqi Zhang
Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China
Search for more papers by this authorAzmat Gyrat
School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
Search for more papers by this authorHaocheng Bai
School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
Search for more papers by this authorXingfu Yan
School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan, Ningxia, China
Search for more papers by this authorCorresponding Author
Peng Kang
School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan, Ningxia, China
Correspondence
Peng Kang, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, Ningxia, China.
Email: [email protected]
Search for more papers by this authorYaqing Pan
School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
Search for more papers by this authorYaqi Zhang
Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China
Search for more papers by this authorAzmat Gyrat
School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
Search for more papers by this authorHaocheng Bai
School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
Search for more papers by this authorXingfu Yan
School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People's Republic of China, Yinchuan, Ningxia, China
Search for more papers by this authorPeng Kang and Yaqing Pan contributed equally to this study and share first authorship.
Abstract
Different land-use practices in temperate forests strongly affect soil quality and soil microbial communities, whereas the assembly and interactions of soil functional fungal communities provide positive feedback. Therefore, the effects of forest ecosystem degradation on the composition of functional soil fungal community and soil nutrient cycling are of particular importance. We studied forest ecosystems in the Liupanshan Mountains in the northwestern part of the Loess Plateau and analyzed the relationship of soil fungal community and soil nutrient cycling under different land use practices (natural forest [NF], plantation forest, and farmland [FL]). The results showed that soil pH and electrical conductivity were the highest in FL, whereas the soil carbon cycle index and nitrogen cycle index decreased. The soil total phosphorus content did not change significantly with an increase in available phosphorus content. The change from NF to FL significantly increased the number of operational taxonomic units, diversity, and richness of soil fungal communities. The composition of the soil fungal communities was also strongly influenced by carbon and nitrogen cycle indices. In addition, FL reclamation increased the complexity of the soil microorganism co-occurrence network, and the interrelationships between soil functional fungal community were enhanced. Pathogenic fungal communities were enriched in FLs, and their relative abundance was significantly regulated by environmental factors such as pH and the ratio of nitrogen to phosphorus. The soil pathogenic fungal community affected carbon and nitrogen cycle indices to varying degrees.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that supports the findings of this study are available in the supplementary material of this article. The datasets presented in this study can be found in the online repositories. The names of the repository/repositories and accession numbers (s) can be found in the NCBI Sequence Read Archive (BioProject: PRJNA869367; PRJNA869430).
Supporting Information
Filename | Description |
---|---|
ldr5257-sup-0001-Figures.docxWord 2007 document , 929.8 KB | Figure S1. The alluvial of the top 10 phyla and 20 genera of relative abundance of bacteria (a) and fungi (b) in different land-use practices. Figure S2. Spearman's correlation analysis of differential bacterial (a) and fungal (b) genera and soil environmental factors. Figure S3. The influencing factors of pathogenic fungi determined by covariance analysis. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Araújo Filho, R. N. D., Freire, M. B. G. D. S., Wilcox, B. P., West, J. B., Freire, F. J., & Marques, F. A. (2018). Recovery of carbon stocks in deforested caatinga dry forest soils requires at least 60 years. Forest Ecology and Management, 407, 210–220. https://doi.org/10.1016/j.foreco.2017.10.002
- Banerjee, S., Schlaeppi, K., & van der Heijden, M. G. A. (2018). Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology, 16(9), 567–576. https://doi.org/10.1038/s41579-018-0024-1
- Bao, S. D. (2000). Soil and agricultural chemistry analysis. China Agriculture Publication.
- Barnett, S. E., Youngblut, N. D., & Buckley, D. H. (2020). Soil characteristics and land-use drive bacterial community assembly patterns. FEMS Microbiology Ecology, 96(1), fiz194. https://doi.org/10.1093/femsec/fiz194
- Bell, T. H., El-Din Hassan, S., Lauron-Moreau, A., Al-Otaibi, F., Hijri, M., Yergeau, E., & St-Arnaud, M. (2014). Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny. The ISME Journal, 8(2), 331–343. https://doi.org/10.1038/ismej.2013.149
- Blesh, J. (2019). Feedbacks between nitrogen fixation and soil organic matter increase ecosystem functions in diversified agroecosystems. Ecological Applications, 29(8), e01986. https://doi.org/10.1002/eap.1986
- Byers, A.-K., Condron, L., O'Callaghan, M., Waipara, N., & Black, A. (2020). Soil microbial community restructuring and functional changes in ancient kauri (Agathis australis) forests impacted by the invasive pathogen Phytophthora agathidicida. Soil Biology and Biochemistry, 150, 108016. https://doi.org/10.1016/j.soilbio.2020.108016
- Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S. M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J. A., Smith, G., & Knight, R. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal, 6(8), 1621–1624. https://doi.org/10.1038/ismej.2012.8
- Cheng, H. Y., Yuan, M. S., Tang, L., Shen, Y. F., Yu, Q., & Li, S. Q. (2022). Integrated microbiology and metabolomics analysis reveal responses of soil microorganisms and metabolic functions to phosphorus fertilizer on semiarid farm. Science of the Total Environment, 817, 152878. https://doi.org/10.1016/j.scitotenv.2021.152878
- Cheng, X. Y., Yun, Y., Wang, H. M., Ma, L. Y., Tian, W., Man, B. Y., & Liu, C. Y. (2021). Contrasting bacterial communities and their assembly processes in karst soils under different land use. Science of the Total Environment, 751, 142263. https://doi.org/10.1016/j.scitotenv.2020.142263
- Claesson, M. J., O'Sullivan, O., Wang, Q., Nikkilä, J., Marchesi, J. R., Smidt, H., de Vos, W. M., Ross, R. P., & O'Toole, P. W. (2009). Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One, 4(8), e6669. https://doi.org/10.1371/journal.pone.0006669
- Coyte, K. Z., Schluter, J., & Foster, K. R. (2015). The ecology of the microbiome: Networks, competition, and stability. Science, 350(6261), 663–666. https://doi.org/10.1126/science.aad2602
- Delgado-Baquerizo, M., Giaramida, L., Reich, P. B., Khachane, A. N., Hamonts, K., Edwards, C., Lawton, L. A., & Singh, B. K. (2016). Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. Journal of Ecology, 104(4), 936–946. https://doi.org/10.1111/1365-2745.12585
- Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan, J. J., Encinar, D., Berdugo, M., Campbell, C. D., & Singh, B. K. (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7(1), 10541. https://doi.org/10.1038/ncomms10541
- Delgado-Baquerizo, M., Reich, P. B., Trivedi, C., Eldridge, D. J., Abades, S., Alfaro, F. D., Bastida, F., Berhe, A. A., Cutler, N. A., Gallardo, A., García-Velázquez, L., Hart, S. C., Hayes, P. E., He, J.-Z., Hseu, Z.-Y., Hu, H.-W., Kirchmair, M., Neuhauser, S., Pérez, C. A., … Singh, B. K. (2020). Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 4(2), 210–220. https://doi.org/10.1038/s41559-019-1084-y
- Deng, L., Peng, C. H., Huang, C. B., Wang, K. B., Liu, Q. Y., Liu, Y. L., Hai, X. Y., & Shangguan, Z. P. (2019). Drivers of soil microbial metabolic limitation changes along a vegetation restoration gradient on the loess plateau, China. Geoderma, 353, 188–200. https://doi.org/10.1016/j.geoderma.2019.06.037
- Eldridge, D. J., & Delgado-Baquerizo, M. (2018). Functional groups of soil fungi decline under grazing. Plant and Soil, 426(1), 51–60. https://doi.org/10.1007/s11104-018-3617-6
- Ge, A. H., Liang, Z. H., Xiao, J. L., Zhang, Y., Zeng, Q., Xiong, C., Han, L. L., Wang, J. T., & Zhang, L. M. (2021). Microbial assembly and association network in watermelon rhizosphere after soil fumigation for Fusarium wilt control. Agriculture, Ecosystems and Environment, 312, 107336. https://doi.org/10.1016/j.agee.2021.107336
- Guo, Y. Q., Xu, T. Q., Cheng, J. M., Wei, G. H., & Lin, Y. B. (2021). Above- and belowground biodiversity drives soil multifunctionality along a long-term grassland restoration chronosequence. Science of the Total Environment, 772, 145010. https://doi.org/10.1016/j.scitotenv.2021.145010
- Harden, J. W., Hugelius, G., Ahlström, A., Blankinship, J. C., Bond-Lamberty, B., Lawrence, C. R., Loisel, J., Malhotra, A., Jackson, R. B., Ogle, S., Phillips, C., Ryals, R., Todd-Brown, K., Vargas, R., Vergara, S. E., Cotrufo, M. F., Keiluweit, M., Heckman, K. A., Crow, S. E., … Nave, L. E. (2018). Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter. Global Change Biology, 24(2), e705–e718. https://doi.org/10.1111/gcb.13896
- Hartmann, M., Frey, B., Mayer, J., Mäder, P., & Widmer, F. (2015). Distinct soil microbial diversity under long-term organic and conventional farming. The ISME Journal, 9(5), 1177–1194. https://doi.org/10.1038/ismej.2014.210
- Jiao, S., Chu, H. Y., Zhang, B. G., Wei, X. R., Chen, W. M., & Wei, G. H. (2022). Linking soil fungi to bacterial community assembly in arid ecosystems. iMeta, 1(1), e2. https://doi.org/10.1002/imt2.2
- Jiao, S., Peng, Z. H., Qi, J. J., Gao, J., & Wei, G. (2021). Linking bacterial-fungal relationships to microbial diversity and soil nutrient cycling. mSystems, 6(2), e01052-20. https://doi.org/10.1128/mSystems.01052-20
- Juan-Ovejero, R., Briones, M. J. I., & Öpik, M. (2020). Fungal diversity in peatlands and its contribution to carbon cycling. Applied Soil Ecology, 146, 103393. https://doi.org/10.1016/j.apsoil.2019.103393
- Kamiya, T., O'Dwyer, K., Nakagawa, S., & Poulin, R. (2014). What determines species richness of parasitic organisms? A meta-analysis across animal, plant and fungal hosts. Biological Reviews of the Cambridge Philosophical Society, 89(1), 123–134. https://doi.org/10.1111/brv.12046
- Kang, P., Pan, Y. Q., Ran, Y. C., Li, W. N., Shao, M. X., Zhang, Y. Q., Ji, Q. B., & Ding, X. D. (2023). Soil saprophytic fungi could be used as an important ecological indicator for land management in desert steppe. Ecological Indicators, 150, 110224. https://doi.org/10.1016/j.ecolind.2023.110224
- Kang, P., Pan, Y. Q., Yang, P., Hu, J. P., Zhao, T. L., Zhang, Y. Q., Ding, X. D., & Yan, X. F. (2022). A comparison of microbial composition under three tree ecosystems using the stochastic process and network complexity approaches. Frontiers in Microbiology, 13, 1018077. https://doi.org/10.3389/fmicb.2022.1018077
- Kim, H., Jeon, J., Lee, K. K., & Lee, Y. H. (2021). Compositional shift of bacterial, archaeal, and fungal communities is dependent on trophic lifestyles in rice paddy soil. Frontiers in Microbiology, 12, 719486. https://doi.org/10.3389/fmicb.2021.719486
- Li, M. H., Guo, J. J., Ren, T., Luo, G. W., Shen, Q. R., Lu, J. W., Guo, S. W., & Ling, N. (2021). Crop rotation history constrains soil biodiversity and multifunctionality relationships. Agriculture, Ecosystems & Environment, 319, 107550. https://doi.org/10.1016/j.agee.2021.107550
- Li, Q. Q., Luo, Y. L., Wang, C. Q., Li, B., Zhang, X., Yuan, D. G., Gao, X. S., & Zhang, H. (2016). Spatiotemporal variations and factors affecting soil nitrogen in the purple hilly area of Southwest China during the 1980s and the 2010s. Science of the Total Environment, 547, 173–181. https://doi.org/10.1016/j.scitotenv.2015.12.094
- Li, X. D., Liu, T., Zhao, C. L., Shao, M. A., & Cheng, J. (2021). Land use drives the spatial variability of soil phosphorus in the Hexi corridor, China. Biogeochemistry, 155(1), 59–75. https://doi.org/10.1007/s10533-021-00812-9
- Li, Z. L., Zeng, Z. Q., Song, Z. P., Wang, F. Q., Tian, D. S., Mi, W. H., Huang, X., Wang, J. S., Song, L., Yang, Z. K., Wang, J., Feng, H. J., Jiang, L. F., Chen, Y., Luo, Y. Q., & Niu, S. L. (2021). Vital roles of soil microbes in driving terrestrial nitrogen immobilization. Global Change Biology, 27(9), 1848–1858. https://doi.org/10.1111/gcb.15552
- Liu, Y. Y., Wang, S., Wang, Z. J., Zhang, Z. J., Qin, H. Y., Wei, Z. Y., Feng, K., Li, S. Z., Wu, Y. N., Yin, H. Q., Li, H., & Deng, Y. (2019). Soil microbiome mediated nutrients decline during forest degradation process. Soil Ecology Letters, 1(1), 59–71. https://doi.org/10.1007/s42832-019-0009-7
10.1007/s42832-019-0009-7 Google Scholar
- Locey, K. J., Fisk, M. C., & Lennon, J. T. (2016). Microscale insight into microbial seed banks. Frontiers in Microbiology, 7, 2040. https://doi.org/10.3389/fmicb.2016.02040
- Locey, K. J., & Lennon, J. T. (2016). Scaling laws predict global microbial diversity. Proceedings of the National Academy of Sciences of the United States of America, 113(21), 5970–5975. https://doi.org/10.1073/pnas.1521291113
- Lu, Z. X., Wang, P., Ou, H. B., Wei, S. X., Wu, L. C., Jiang, Y., Wang, R. J., Liu, X. S., Wang, Z. H., Chen, L. J., & Liu, Z. M. (2022). Effects of different vegetation restoration on soil nutrients, enzyme activities, and microbial communities in degraded karst landscapes in southwest China. Forest Ecology and Management, 508, 120002. https://doi.org/10.1016/j.foreco.2021.120002
- Ma, H. Y., Zhou, J., Ge, J. Y., Nie, J. W., Zhao, J., Xue, Z. Q., Hu, Y. G., Yang, Y. D., Peixoto, L., Zang, H. D., & Zeng, Z. H. (2022). Intercropping improves soil ecosystem multifunctionality through enhanced available nutrients but depends on regional factors. Plant and Soil, 480(1), 71–84. https://doi.org/10.1007/s11104-022-05554-7
- Maharjan, M., Maranguit, D., & Kuzyakov, Y. (2018). Phosphorus fractions in subtropical soils depending on land use. European Journal of Soil Biology, 87, 17–24. https://doi.org/10.1016/j.ejsobi.2018.04.002
- Makiola, A., Dickie, I. A., Holdaway, R. J., Wood, J. R., Orwin, K. H., & Glare, T. R. (2019). Land use is a determinant of plant pathogen alpha- but not beta-diversity. Molecular Ecology, 28(16), 3786–3798. https://doi.org/10.1111/mec.15177
- Mori, A. S., Isbell, F., & Seidl, R. (2018). β-Diversity, community assembly, and ecosystem functioning. Trends in Ecology & Evolution, 33(7), 549–564. https://doi.org/10.1016/j.tree.2018.04.012
- Morreale, L. L., Thompson, J. R., Tang, X., Reinmann, A. B., & Hutyra, L. R. (2021). Elevated growth and biomass along temperate forest edges. Nature Communications, 12(1), 7181. https://doi.org/10.1038/s41467-021-27373-7
- Netherway, T., Bengtsson, J., Krab, E. J., & Bahram, M. (2021). Biotic interactions with mycorrhizal systems as extended nutrient acquisition strategies shaping forest soil communities and functions. Basic and Applied Ecology, 50, 25–42. https://doi.org/10.1016/j.baae.2020.10.002
- Nguyen, N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J., Schilling, J. S., & Kennedy, P. G. (2016). FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20, 241–248. https://doi.org/10.1016/j.funeco.2015.06.006
- Ouyang, Y., & Li, X. Y. (2020). Effect of repeated drying-rewetting cycles on soil extracellular enzyme activities and microbial community composition in arid and semi-arid ecosystems. European Journal of Soil Biology, 98, 103187. https://doi.org/10.1016/j.ejsobi.2020.103187
- Pan, Y. Q., Kang, P., Hu, J. P., & Song, N. P. (2021). Bacterial community demonstrates stronger network connectivity than fungal community in desert-grassland salt marsh. Science of the Total Environment, 798, 149118. https://doi.org/10.1016/j.scitotenv.2021.149118
- Parelho, C., Rodrigues, A. S., Cruz, J. V., & Garcia, P. (2014). Linking trace metals and agricultural land use in volcanic soils – A multivariate approach. Science of the Total Environment, 496, 241–247. https://doi.org/10.1016/j.scitotenv.2014.07.053
- Phillips, L. A., Schefe, C. R., Fridman, M., O'Halloran, N., Armstrong, R. D., & Mele, P. M. (2015). Organic nitrogen cycling microbial communities are abundant in a dry Australian agricultural soil. Soil Biology and Biochemistry, 86, 201–211. https://doi.org/10.1016/j.soilbio.2015.04.004
- Qu, B., Zhang, Y. L., Kang, S. C., & Sillanpää, M. (2017). Water chemistry of the southern Tibetan plateau: An assessment of the Yarlung Tsangpo river basin. Environmental Earth Sciences, 76, 74. https://doi.org/10.1007/s12665-017-6393-3
- Robinson, D. A., Hopmans, J. W., Filipovic, V., van der Ploeg, M., Lebron, I., Jones, S. B., Reinsch, S., Jarvis, N., & Tuller, M. (2019). Global environmental changes impact soil hydraulic functions through biophysical feedbacks. Global Change Biology, 25(6), 1895–1904. https://doi.org/10.1111/gcb.14626
- Saiya-Cork, K. R., Sinsabaugh, R. L., & Zak, D. R. (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 34(9), 1309–1315. https://doi.org/10.1016/S0038-0717(02)00074-3
- Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E. L., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H., Oesterheld, M., Poff, N. L., Sykes, M. T., Walker, B., Walker, M., & Wall, D. H. (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774. https://doi.org/10.1126/science.287.5459.1770
- Saleem, M., Meckes, N., Pervaiz, Z. H., & Traw, M. B. (2017). Microbial interactions in the phyllosphere increase plant performance under herbivore biotic stress. Frontiers in Microbiology, 8, 41. https://doi.org/10.3389/fmicb.2017.00041
- Saleem, M., & Moe, L. A. (2014). Multitrophic microbial interactions for eco- and agro-biotechnological processes: Theory and practice. Trends in Biotechnology, 32(10), 529–537. https://doi.org/10.1016/j.tibtech.2014.08.002
- Scotti, R., Iovieno, P., & Zaccardelli, M. (2015). Comparative assessment of microbial activity and biomass in paired forest and agricultural soils. Biology and Fertility of Soils, 51(8), 1013–1019. https://doi.org/10.1007/s00374-015-1042-z
- Seth, E. C., & Taga, M. E. (2014). Nutrient cross-feeding in the microbial world. Frontiers in Microbiology, 5, 350. https://doi.org/10.3389/fmicb.2014.00350
- Silva-Olaya, A. M., Mora-Motta, D. A., Cherubin, M. R., Grados, D., Somenahally, A., & Ortiz-Morea, F. A. (2021). Soil enzyme responses to land use change in the tropical rainforest of the Colombian Amazon region. PLoS One, 16(8), e0255669. https://doi.org/10.1371/journal.pone.0255669
- Sławski, M., Tarabuła, T., & Sławska, M. (2020). Does the enrichment of post-arable soil with organic matter stimulate forest ecosystem restoration—A view from the perspective of three decades after the afforestation of farmland. Forest Ecology and Management, 478, 118525. https://doi.org/10.1016/j.foreco.2020.118525
10.1016/j.foreco.2020.118525 Google Scholar
- Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., Labadie, K., Salazar, G., Djahanschiri, B., Zeller, G., Mende, D. R., Alberti, A., Cornejo-Castillo, F. M., Costea, P. I., Cruaud, C., d'Ovidio, F., Engelen, S., Ferrera, I., Gasol, J. M., Guidi, L., Hildebrand, F., … Bork, P. (2015). Ocean plankton. Structure and function of the global ocean microbiome. Science, 348(6237), 1261359. https://doi.org/10.1126/science.1261359
- Tardy, V., Chabbi, A., Charrier, X., de Berranger, C., Reignier, T., Dequiedt, S., Faivre-Primot, C., Terrat, S., Ranjard, L., & Maron, P. A. (2015). Land use history shifts in situ fungal and bacterial successions following wheat straw input into the soil. PLoS One, 10(6), e0130672. https://doi.org/10.1371/journal.pone.0130672
- Teixeira, H. M., Cardoso, I. M., Bianchi, F. J. J. A., da Cruz Silva, A., Jamme, D., & Peña-Claros, M. (2020). Linking vegetation and soil functions during secondary forest succession in the Atlantic forest. Forest Ecology and Management, 457, 117696. https://doi.org/10.1016/j.foreco.2019.117696
- Tian, J. Q., Qiao, Y. C., Wu, B., Chen, H., Li, W., Jiang, N., Zhang, X. L., & Liu, X. Z. (2017). Ecological succession pattern of fungal community in soil along a retreating glacier. Frontiers in Microbiology, 8, 1028. https://doi.org/10.3389/fmicb.2017.01028
- Vahter, T., Sepp, S.-K., Astover, A., Helm, A., Kikas, T., Liu, S., Oja, J., Öpik, M., Penu, P., Vasar, M., Veromann, E., Zobel, M., & Hiiesalu, I. (2022). Landscapes, management practices and their interactions shape soil fungal diversity in arable fields – Evidence from a nationwide farmers' network. Soil Biology and Biochemistry, 168, 108652. https://doi.org/10.1016/j.soilbio.2022.108652
- van der Putten, W. H., Bradford, M. A., Pernilla Brinkman, E., van de Voorde, T. F. J., & Veen, G. F. (2016). Where, when and how plant–soil feedback matters in a changing world. Functional Ecology, 30(7), 1109–1121. https://doi.org/10.1111/1365-2435.12657
- Wang, J., Wang, X. T., Liu, G. B., Zhang, C., & Wang, G. L. (2021). Bacterial richness is negatively related to potential soil multifunctionality in a degraded alpine meadow. Ecological Indicators, 121, 106996. https://doi.org/10.1016/j.ecolind.2020.106996
- Wang, Y. F., Chen, P., Wang, F. H., Han, W. X., Qiao, M., Dong, W. X., Hu, C. S., Zhu, D., Chu, H. Y., & Zhu, Y. G. (2022). The ecological clusters of soil organisms drive the ecosystem multifunctionality under long-term fertilization. Ecological Indicators, 161, 107133. https://doi.org/10.1016/j.envint.2022.107133
- Wang, Z. R., Liu, Y. B., Zhao, L. N., Zhang, W. L., & Liu, L. C. (2019). Change of soil microbial community under long-term fertilization in a reclaimed sandy agricultural ecosystem. PeerJ, 7, e6497. https://doi.org/10.7717/peerj.6497
- Wei, Z., Yang, T. J., Friman, V.-P., Xu, Y. C., Shen, Q. R., & Jousset, A. (2015). Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nature Communications, 6(1), 8413. https://doi.org/10.1038/ncomms9413
- Xing, J. J., Peng, L. Y., Chen, J. H., Huang, J. Q., Jiang, P. K., & Qin, H. (2022). A new insight into spacing patterns of soil bacterial microbiome induced by root rot of Carya cathayensis. Applied Soil Ecology, 174, 104416. https://doi.org/10.1016/j.apsoil.2022.104416
10.1016/j.apsoil.2022.104416 Google Scholar
- Xue, P. P., Minasny, B., & McBratney, A. B. (2022). Land-use affects soil microbial co-occurrence networks and their putative functions. Applied Soil Ecology, 169, 104184. https://doi.org/10.1016/j.apsoil.2021.104184
- Xun, W. B., Li, W., Xiong, W., Ren, Y., Liu, Y. P., Miao, Y. Z., Xu, Z. H., Zhang, N., Shen, Q. R., & Zhang, R. F. (2019). Diversity-triggered deterministic bacterial assembly constrains community functions. Nature Communications, 10(1), 3833. https://doi.org/10.1038/s41467-019-11787-5
- Yang, L., Wei, W., Chen, L. D., & Mo, B. R. (2012). Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China. Journal of Hydrology, 475, 111–122. https://doi.org/10.1016/j.jhydrol.2012.09.041
- Yang, W., Jing, X. Y., Guan, Y. P., Zhai, C., Wang, T., Shi, D. Y., Sun, W. P., & Gu, S. Y. (2019). Response of fungal communities and co-occurrence network patterns to compost amendment in black soil of Northeast China. Frontiers in Microbiology, 10, 1562. https://doi.org/10.3389/fmicb.2019.01562
- Yao, M. J., Rui, J. P., Li, J. B., Wang, J. M., Cao, W. D., & Li, X. Z. (2018). Soil bacterial community shifts driven by restoration time and steppe types in the degraded steppe of Inner Mongolia. Catena, 165, 228–236. https://doi.org/10.1016/j.catena.2018.02.006
- Yu, R. P., Lambers, H., Callaway, R. M., Wright, A. J., & Li, L. (2021). Belowground facilitation and trait matching: Two or three to tango? Trends in Plant Science, 26(12), 1227–1235. https://doi.org/10.1016/j.tplants.2021.07.014
- Yu, S., He, Z. L., Stoffella, P. J., Calvert, D. V., Yang, X. E., Banks, D. J., & Baligar, V. C. (2006). Surface runoff phosphorus (P) loss in relation to phosphatase activity and soil P fractions in Florida sandy soils under citrus production. Soil Biology and Biochemistry, 38(3), 619–628. https://doi.org/10.1016/j.soilbio.2005.02.040
- Zarafshar, M., Bazot, S., Matinizadeh, M., Bordbar, S. K., Rousta, M. J., Kooch, Y., Enayati, K., Abbasi, A., & Negahdarsaber, M. (2020). Do tree plantations or cultivated fields have the same ability to maintain soil quality as natural forests? Applied Soil Ecology, 151, 103536. https://doi.org/10.1016/j.apsoil.2020.103536
- Zeng, J., Liu, X. J., Song, L., Lin, X. G., Zhang, H. Y., Shen, C. C., & Chu, H. Y. (2016). Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biology and Biochemistry, 92, 41–49. https://doi.org/10.1016/j.soilbio.2015.09.018
- Zhang, B., Liang, A., Wei, Z. B., & Ding, X. L. (2019). No-tillage leads to a higher resistance but a lower resilience of soil multifunctionality than ridge tillage in response to dry-wet disturbances. Soil and Tillage Research, 195, 104376. https://doi.org/10.1016/j.still.2019.104376
- Zhang, H., Ouyang, Z. C., Jiang, P. H., Li, M. C., & Zhao, X. M. (2022). Spatial distribution patterns and influencing factors of soil carbon, phosphorus, and C:P ratio on farmlands in southeastern China. Catena, 216, 106409. https://doi.org/10.1016/j.catena.2022.106409
- Zhang, P., Guan, P. T., Hao, C., Yang, J. J., Xie, Z. J., & Wu, D. H. (2022). Changes in assembly processes of soil microbial communities in forest-to-cropland conversion in Changbai Mountains, northeastern China. Science of the Total Environment, 818, 151738. https://doi.org/10.1016/j.scitotenv.2021.151738
- Zhang, X., Xiang, D. Q., Yang, C., Wu, W., & Liu, H. B. (2022). The spatial variability of temporal changes in soil pH affected by topography and fertilization. Catena, 218, 106586. https://doi.org/10.1016/j.catena.2022.106586
- Zhang, Y., Peng, C. H., Li, W. Z., Tian, L. X., Zhu, Q., Chen, H., Fang, X. Q., Zhang, G. L., Liu, G. B., Mu, X. M., Li, Z. B., Li, S. Q., Yang, Y. Z., Wang, J., & Xiao, X. M. (2016). Multiple afforestation programs accelerate the greenness in the ‘three north’ region of China from 1982 to 2013. Ecological Indicators, 61, 404–412. https://doi.org/10.1016/j.ecolind.2015.09.041
- Zhang, Y. H., Ni, J., Tang, F. P., Jiang, L. F., Guo, T. R., Pei, K. Q., Sun, L. F., & Liang, Y. (2017). Diversity of root-associated fungi of Vaccinium mandarinorum along a human disturbance gradient in subtropical forests, China. Journal of Plant Ecology, 10(1), 56–66. https://doi.org/10.1093/jpe/rtw022
- Zhao, F. Z., Ren, C. J., Han, X. H., Yang, G. H., Wang, J., & Doughty, R. (2018). Changes of soil microbial and enzyme activities are linked to soil C, N and P stoichiometry in afforested ecosystems. Forest Ecology and Management, 427, 289–295. https://doi.org/10.1016/j.foreco.2018.06.011
- Zheng, Y., Ji, N. N., Wu, B. W., Wang, J. T., Hu, H. W., Guo, L. D., & He, J. Z. (2020). Climatic factors have unexpectedly strong impacts on soil bacterial β-diversity in 12 forest ecosystems. Soil Biology and Biochemistry, 142, 107699. https://doi.org/10.1016/j.soilbio.2019.107699
- Zhou, J. Z., Deng, Y., Shen, L. N., Wen, C. Q., Yan, Q. Y., Ning, D. L., Qin, Y. J., Xue, K., Wu, L. Y., He, Z. L., Voordeckers, J. W., Nostrand, J. D., Buzzard, V., Michaletz, S. T., Enquist, B. J., Weiser, M. D., Kaspari, M., Waide, R., Yang, Y. F., & Brown, J. H. (2016). Temperature mediates continental-scale diversity of microbes in forest soils. Nature Communications, 7, 12083. https://doi.org/10.1038/ncomms12083
Citing Literature
October 2024
Pages 4781-4794