Dryland nitrogen deposition induces microbiome-driven increases in biocrust respiration and losses of soil carbon
Weiqiang Dou
Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs/College of Land Science and Technology, China Agricultural University, Beijing, China
Search for more papers by this authorCorresponding Author
Bo Xiao
Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs/College of Land Science and Technology, China Agricultural University, Beijing, China
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China/Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, China
Correspondence
Bo Xiao, College of Land Science and Technology, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
Email: [email protected]
Search for more papers by this authorManuel Delgado-Baquerizo
Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain
Search for more papers by this authorDaniel Revillini
Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain
Search for more papers by this authorGiora J. Kidron
Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
Search for more papers by this authorWeiqiang Dou
Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs/College of Land Science and Technology, China Agricultural University, Beijing, China
Search for more papers by this authorCorresponding Author
Bo Xiao
Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs/College of Land Science and Technology, China Agricultural University, Beijing, China
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China/Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, China
Correspondence
Bo Xiao, College of Land Science and Technology, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
Email: [email protected]
Search for more papers by this authorManuel Delgado-Baquerizo
Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain
Search for more papers by this authorDaniel Revillini
Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain
Search for more papers by this authorGiora J. Kidron
Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
Search for more papers by this authorAbstract
Biocrusts are a dominant component in drylands worldwide and play critical roles in supporting soil microbial diversity and carbon (C) stocks. Nitrogen (N) fertilization associated with human activities threatens drylands, which are often considered N-limited ecosystems. Here, we conducted a field experiment in two contrasting soil types (loess vs. sand) to investigate the impacts of low (30 kg N ha−1 year−1) and high (90 kg N ha−1 year−1) fertilization on moss-biocrust dominated traits, soil nutrients, microbial taxonomic richness, soil C stocks and respiration rates (Rs). We showed that 5 months of N addition resulted in reductions in soil organic C content by 91% and increased both soil microbial richness and diversity. Our results further showed that relative to controls, low levels of N addition increased biocrust Rs by 52% through increased moss biomass and density (38% and 73%) and microbial taxonomic richness and diversity (18% and 23%), while no significant changes in biocrust Rs were observed after high levels of N addition. Considering multiple environmental factors simultaneously, we show that N fertilization indirectly promoted soil respiration and C losses via increases in microbial richness and diversity, which are critical drivers of soil function. Our work provides solid evidence that N deposition, even at low levels of N addition, can result in rapid losses of C in dryland soils. Our findings suggest that to maintain healthy dryland ecosystems and promote C, we must mitigate future land degradation and minimize anthropogenic N deposition.
CONFLICT OF INTEREST STATEMENT
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ldr4942-sup-0001-Supinfo.docxWord 2007 document , 1.7 MB | Data S1. Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Babur, E., Uslu, O. S., Battaglia, M. L., Mumtaz, M. Z., Danish, S., Fahad, S., Diatta, A. A., Datta, R., & Ozlu, E. (2021). Nitrogen fertilizer effects on microbial respiration, microbial biomass, and carbon sequestration in a mediterranean grassland ecosystem. International Journal of Environmental Research, 15(4), 655–665. https://doi.org/10.1007/s41742-021-00336-y
- Bates, S. T., Nash, T. H., & Garcia-Pichel, F. (2012). Patterns of diversity for fungal assemblages of biological soil crusts from the southwestern United States. Mycologia, 104(2), 353–361. https://doi.org/10.3852/11-232
- Chen, Z. F., Xiong, P. F., Zhou, J. J., Yang, Q., Wang, Z., & Xu, B. C. (2020). Grassland productivity and diversity changes in responses to N and P addition depend primarily on tall clonal and annual species in semiarid loess plateau. Ecological Engineering, 145, 105727. https://doi.org/10.1016/j.ecoleng.2020.105727
- Clark, C. M., & Tilman, D. (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451(7179), 712–715. https://doi.org/10.1038/nature06503
- Dacal, M., Garcia-Palacios, P., Asensio, S., Cano-Diaz, C., Gozalo, B., Ochoa, V., & Maestre, F. T. (2020). Contrasting mechanisms underlie short- and longer-term soil respiration responses to experimental warming in a dryland ecosystem. Global Change Biology, 26(9), 5254–5266. https://doi.org/10.1111/gcb.15209
- Daniel, R., Catherine, A. G., & Nancy, C. J. (2016). The role of locally adapted mycorrhizas and rhizobacteria in plant-soil feedback systems. Functional Ecology, 30(7), 1086–1098. https://doi.org/10.1111/1365-2435.12668
- Davidson, E. A. (2009). The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience, 2(9), 659–662. https://doi.org/10.1038/NGEO608
- Delgado-Baquerizo, M., Maestre, F. T., Eldridge, D. J., Bowker, M. A., Jeffries, T. C., & Singh, B. K. (2018). Biocrust-forming mosses mitigate the impact of aridity on soil microbial communities in drylands: Observational evidence from three continents. New Phytologist, 220(3), 824–835. https://doi.org/10.1111/nph.15120
- Delgado-Baquerizo, M., Maestre, F. T., Eldridge, D. J., Bowker, M. A., Ochoa, V., Gozalo, B., Berdugo, M., Val, J., & Singh, B. K. (2016). Biocrust-forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands. New Phytologist, 209(4), 1540–1552. https://doi.org/10.1111/nph.13688
- Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan, J. J., Encinar, D., Berdugo, M., Campbell, C. D., & Singh, B. K. (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541. https://doi.org/10.1038/ncomms10541
- Devaraju, N., Bala, G., Caldeira, K., & Nemani, R. (2016). A model based investigation of the relative importance of CO2-fertilization, climate warming, nitrogen deposition and land use change on the global terrestrial carbon uptake in the historical period. Climate Dynamics, 47(2), 173–190. https://doi.org/10.1007/s00382-015-2830-8
- Dias, T., Crous, C. J., Ochoa-Hueso, R., Manrique, E., Martins-Loucao, M. A., & Cruz, C. (2020). Nitrogen inputs may improve soil biocrusts multifunctionality in dryland ecosystems. Soil Biology and Biochemistry, 149, 107947. https://doi.org/10.1016/j.soilbio.2020.107947
- Dou, W. Q., Xiao, B., Wang, Y. F., & Kidron, G. J. (2022). Contributions of three types of biocrusts to soil carbon stock and annual efflux in a small watershed of northern Chinese loess plateau. Applied Soil Ecology, 179, 104596. https://doi.org/10.1016/j.apsoil.2022.104596
- Eldridge, D. J., Guirado, E., Reich, P. B., Ochoa-Hueso, R., Berdugo, M., Saez-Sandino, T., Blanco-Pastor, J. L., Tedersoo, L., Plaza, C., Ding, J. Y., Sun, W., Mamet, S., Cui, H. Y., He, J. Z., Hu, H. W., Sokoya, B., Abades, S., Alfaro, F., Bamigboye, A. R., … Delgado-Baquerizo, M. (2023). The global contribution of soil mosses to ecosystem services. Nature Geoscience, 16, 430–438. https://doi.org/10.1038/s41561-023-01170-x
- Forsmark, B., Nordin, A., Maaroufi, N. I., Lundmark, T., & Gundale, M. J. (2020). Low and high nitrogen deposition rates in northern coniferous forests have different impacts on aboveground litter production, soil respiration, and soil carbon stocks. Ecosystems, 23(7), 1423–1436. https://doi.org/10.1007/s10021-020-00478-8
- Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z. C., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., & Sutton, M. A. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320(5878), 889–892. https://doi.org/10.1126/science.1136674
- Gao, L. Q., Bowker, M. A., Xu, M. X., Sun, H., Tuo, D. F., & Zhao, Y. G. (2017). Biological soil crusts decrease erodibility by modifying inherent soil properties on the loess plateau, China. Soil Biology and Biochemistry, 105, 49–58. https://doi.org/10.1016/j.soilbio.2016.11.009
- Gao, Q., Hasselquist, N. J., Palmroth, S., Zheng, Z. M., & You, W. H. (2014). Short-term response of soil respiration to nitrogen fertilization in a subtropical evergreen forest. Soil Biology and Biochemistry, 76, 297–300. https://doi.org/10.1016/j.soilbio.2014.04.020
- Grishkan, I., & Kidron, G. J. (2017). Vertical divergence of cultural microfungal communities at the Hallamish dunefield, western Negev desert, Israel. Geomicrobiology Journal, 34, 706–721. https://doi.org/10.1080/01490451.2016.1243597
- Guan, C., Zhang, P., Zhao, C. M., & Li, X. R. (2021). Effects of warming and rainfall pulses on soil respiration in a biological soil crust-dominated desert ecosystem. Geoderma, 381, 114683. https://doi.org/10.1016/j.geoderma.2020.114683
- Guo, P., Jia, J. L., Han, T. W., Xie, J. X., Wu, P. F., Du, Y. H., & Qu, K. Y. (2017). Nonlinear responses of forest soil microbial communities and activities after short and long-term gradient nitrogen additions. Applied Soil Ecology, 121, 60–64. https://doi.org/10.1016/j.apsoil.2017.09.018
- Han, Q., Ma, Q., Chen, Y., Tian, B., Xu, L. X., Bai, Y., Chen, W. F., & Li, X. (2020). Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME Journal, 14(8), 1915–1928. https://doi.org/10.1038/s41396-020-0648-9
- Hui, R., Li, X. R., Zhao, R. M., Tan, H. J., & Jia, R. L. (2021). Physiological response of moss/cyanobacteria crusts along a precipitation gradient from semi-arid to arid desert in China. Plant and Soil, 468(2), 97–113. https://doi.org/10.1007/s11104-021-05117-2
- Kheirfam, H. (2020). Increasing soil potential for carbon sequestration using microbes from biological soil crusts. Journal of Arid Environments, 172, 104022. https://doi.org/10.1016/j.jaridenv.2019.104022
- Kidron, G. J., Barinova, S., & Vonshak, A. (2012). The effects of heavy winter rains and rare summer rains on biological soil crusts in the Negev Desert. Catena, 95, 6–11. https://doi.org/10.1016/j.catena.2012.02.021
- Kidron, G. J., & Benenson, I. (2014). Biocrusts serve as biomarkers for the upper 30 cm soil water content. Journal of Hydrology, 509, 398–405. https://doi.org/10.1016/j.jhydrol.2013.11.041
- Kidron, G. J., Vonshak, A., & Abeliovich, A. (2009). Microbiotic crusts as biomarkers for surface stability and wetness duration in the Negev Desert. Earth Surface Processes and Landforms, 34, 1594–1604. https://doi.org/10.1002/esp.1843
- Li, K. Y., Niu, M. G., Bai, W. M., Yang, Z. L., & Li, G. Y. (2021). Water-dominated negative effects of nitrogen enrichment on soil respiration in a temperate steppe. Applied Soil Ecology, 165, 104023. https://doi.org/10.1016/j.apsoil.2021.104023
- Li, Q., Ma, Q. H., Gao, J. P., Zhang, J. B., Li, Y. F., Shi, M., Peng, C. H., & Song, X. Z. (2022). Stumps increased soil respiration in a subtropical Moso bamboo (Phyllostachys edulis) plantation under nitrogen addition. Agricultural and Forest Meteorology, 323, 109047. https://doi.org/10.1016/j.agrformet.2022.109047
- Li, S. L., Xiao, B., Sun, F. H., & Kidron, G. J. (2021). Moss-dominated biocrusts enhance water vapor sorption capacity of surface soil and increase non-rainfall water deposition in drylands. Geoderma, 388, 114930. https://doi.org/10.1016/j.geoderma.2021.114930
- Maestre, F. T., Delgado-Baquerizo, M., Jeffries, T. C., Eldridge, D. J., Ochoa, V., Gozalo, B., Quero, J. L., Garcia-Gomez, M., Gallardo, A., Ulrich, W., Bowker, M. A., Arredondo, T., Barraza-Zepeda, C., Bran, D., Florentino, A., Gaitan, J., Gutierrez, J. R., Huber-Sannwald, E., Jankju, M., … Singh, B. K. (2015). Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences of the United States of America, 112(51), 15684–15689. https://doi.org/10.1073/pnas.1516684112
- Maier, S., Schmidt, T. S. B., Zheng, L. J., Peer, T., Wagner, V., & Grube, M. (2014). Analyses of dryland biological soil crusts highlight lichens as an important regulator of microbial communities. Biodiversity and Conservation, 23(7), 1735–1755. https://doi.org/10.1007/s10531-014-0719-1
- Miralles, I., de Guevara, M. L., Chamizo, S., Rodriguez-Caballero, E., Ortega, R., van Wesemael, B., & Canton, Y. (2018). Soil CO2 exchange controlled by the interaction of biocrust successional stage and environmental variables in two semiarid ecosystems. Soil Biology and Biochemistry, 124, 11–23. https://doi.org/10.1016/j.soilbio.2018.05.020
- Mueller, R. C., Belnap, J., & Kuske, C. R. (2015). Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland. Frontiers in Microbiology, 6, 891. https://doi.org/10.3389/fmicb.2015.00891
- Peng, Y., Song, S. Y., Li, Z. Y., Li, S., Chen, G. T., Hu, H. L., Xie, J. L., Chen, G., Xiao, Y. L., Liu, L., Tang, Y., & Tu, L. H. (2020). Influences of of nitrogen addition and aboveground litter-input manipulations on soil respiration and biochemical properties in a subtropical forest. Soil Biology and Biochemistry, 142, 107694. https://doi.org/10.1016/j.soilbio.2019.107694
- Pocknee, S., & Sumner, M. E. (1997). Cation and nitrogen contents of organic matter determine its soil liming potential. Soil Science Society of America Journal, 61(1), 86–92. https://doi.org/10.2136/sssaj1997.03615995006100010014x
- Ren, F., Yang, X. X., Zhou, H. K., Zhu, W. Y., Zhang, Z. H., Chen, L. T., Cao, G. M., & He, J. S. (2016). Contrasting effects of nitrogen and phosphorus addition on soil respiration in an alpine grassland on the Qinghai-Tibetan plateau. Scientific Reports, 6, 39895. https://doi.org/10.1038/srep39895
- Schimel, D. S. (2010). Drylands in the earth system. Science, 327(5964), 418–419. https://doi.org/10.1126/science.1184946
- Soule, T., Anderson, I. J., Johnson, S. L., Bates, S. T., & Garcia-Pichel, F. (2009). Archaeal populations in biological soil crusts from arid lands in North America. Journal of Arid Environments, 41(10), 2069–2074. https://doi.org/10.1016/j.soilbio.2009.07.023
- Su, Y. G., Wu, L., Zhou, Z. B., Liu, Y. B., & Zhang, Y. M. (2013). Carbon flux in deserts depends on soil cover type: A case study in the Gurbantunggute desert, North China. Soil Biology and Biochemistry, 58, 332–340. https://doi.org/10.1016/j.soilbio.2012.12.006
- Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method fordetermining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38. https://doi.org/10.1097/00010694-193401000-00003
- Wang, C., Liu, D. W., & Bai, E. (2018). Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology and Biochemistry, 120, 126–133. https://doi.org/10.1016/j.soilbio.2018.02.003
- Wang, J., Bao, J. T., Su, J. Q., Li, X. R., Chen, G. X., & Ma, X. F. (2015). Impact of inorganic nitrogen additions on microbes in biological soil crusts. Soil Biology and Biochemistry, 88, 303–313. https://doi.org/10.1016/j.soilbio.2015.06.004
- Wang, Y., Hong, Y., Tian, Y. L., Tian, G. Q., Zhang, J. H., Wu, H. W., Bai, Y., & Qian, J. M. (2022). Changes in bacterial community composition and soil properties altered the response of soil respiration to rain addition in desert biological soil crusts. Geoderma, 409, 115635. https://doi.org/10.1016/j.geoderma.2021.115635
- Wilcots, M. E., Schroeder, K. M., DeLancey, L. C., Kjaer, S. J., Hobbie, S. E., Seabloom, E. W., & Borer, E. T. (2022). Realistic rates of nitrogen addition increase carbon flux rates but do not change soil carbon stocks in a temperate grassland. Global Change Biology, 28, 4819–4831. https://doi.org/10.1111/gcb.16272
- Wilske, B., Burgheimer, J., Karnieli, A., Zaady, E., Andreae, M. O., Yakir, D., & Kesselmeir, J. (2008). The CO2 exchange of biological soil crusts in a semiarid grass-shrubland at the northern transition zone of the Negev Desert, Israel. Biogeosciences Discussions, 5, 1969–2001. https://doi.org/10.5194/BG-5-1411-2008
- Wu, L., Zhang, Y. M., Zhang, J., & Downing, A. (2015). Precipitation intensity is the primary driver of moss crust-derived CO2 exchange: Implications for soil C balance in a temperate desert of northwestern China. European Journal of Soil Biology, 67, 27–34. https://doi.org/10.1016/j.ejsobi.2015.01.003
- Xiao, B., Sun, F. H., Hu, K. L., & Kidron, G. J. (2019). Biocrusts reduce surface soil infiltrability and impede soil water infiltration under tension and ponding conditions in dryland ecosystem. Journal of Hydrology, 568, 792–802. https://doi.org/10.1016/j.jhydrol.2018.11.051
- Xiao, B., & Veste, M. (2017). Moss-dominated biocrusts increase soil microbial abundance and community diversity and improve soil fertility in semi-arid climates on the loess plateau of China. Applied Soil Ecology, 117, 165–177. https://doi.org/10.1016/j.apsoil.2017.05.005
- Xing, A. J., Du, E. Z., Shen, H. H., Xu, L. C., Zhao, M. Y., Liu, X. Y., & Fang, J. Y. (2022). High-level nitrogen additions accelerate soil respiration reduction over time in a boreal forest. Ecology Letters, 25(8), 1869–1878. https://doi.org/10.1111/ele.14065
- Yan, W. D., Chen, X. Y., Peng, Y. Y., Zhu, F., Zhen, W., & Zhang, X. Y. (2020). Response of soil respiration to nitrogen addition in two subtropical forest types. Pedosphere, 30(4), 478–486. https://doi.org/10.1016/S1002-0160(17)60471-5
- Ye, C. L., Chen, D. M., Hall, S. J., Pan, S., Yan, X. B., Bai, T. S., Guo, H., Zhang, Y., Bai, Y. F., & Hu, S. J. (2018). Reconciling multiple impacts of nitrogen enrichment on soil carbon: Plant, microbial and geochemical controls. Ecology Letters, 21(8), 1162–1173. https://doi.org/10.1111/ele.13083
- Yu, J., Kidron, G. J., Pen-Mouratov, S., Wasserstrom, H., Barnes, G., & Steinberger, Y. (2012). Do development stages of biological soil crusts determine activity and functional diversity in a sand-dune ecosystem? Soil Biology and Biochemistry, 51, 66–72. https://doi.org/10.1016/j.soilbio.1012.04.007
- Yuan, X. B., Niu, D. C., Weber-Grullon, L., & Fu, H. (2020). Nitrogen deposition enhances plant-microbe interactions in a semiarid grassland: The role of soil physicochemical properties. Geoderma, 373, 114446. https://doi.org/10.1016/j.geoderma.2020.114446
- Zhang, B. C., Zhang, Y. M., Downing, A., & Niu, Y. L. (2011). Distribution and composition of cyanobacteria and microalgae associated with biological soil crusts in the Gurbantunggut Desert, China. Arid Land Research and Management, 25(3), 275–293. https://doi.org/10.1080/15324982.2011.565858
- Zhang, J. J., Ru, J. Y., Song, J., Li, H., Li, X. M., Ma, Y. F., Li, Z., Hao, Y. F., Chi, Z. S., Hui, D. F., & Wan, S. Q. (2022). Increased precipitation and nitrogen addition accelerate the temporal increase in soil respiration during 8-year old-field grassland succession. Global Change Biology, 28(12), 3944–3959. https://doi.org/10.1111/gcb.16159
- Zhang, K. P., Ni, Y. Y., Liu, X. J., & Chu, H. Y. (2020). Microbes changed their carbon use strategy to regulate the priming effect in an 11-year nitrogen addition experiment in grassland. Science of the Total Environment, 727, 138645. https://doi.org/10.1016/j.scitotenv.2020.138645
- Zhang, W., Zhang, G. S., Liu, G. X., Dong, Z. B., Chen, T., Zhang, M. X., Dyson, P. J., & An, L. Z. (2012). Bacterial diversity and distribution in the southeast edge of the Tengger Desert and their correlation with soil enzyme activities. Journal of Environmental Sciences, 24(11), 2004–2011. https://doi.org/10.1016/S1001-0742(11)61037-1
- Zheng, J. L., Peng, C. R., Li, H., Li, S. S., Huang, S., Hu, Y., Zhang, J. L., & Li, D. H. (2018). The role of non-rainfall water on physiological activation in desert biological soil crusts. Journal of Hydrology, 556, 790–799. https://doi.org/10.1016/j.jhydrol.2017.12.003
- Zhou, L. Y., Zhou, X. H., Zhang, B. C., Lu, M., Luo, Y. Q., Liu, L. L., & Li, B. (2014). Different responses of soil respiration and its components to nitrogen addition among biomes: A meta-analysis. Global Change Biology, 20(7), 2332–2343. https://doi.org/10.1111/gcb.12490
- Zhou, X. B., Tao, Y., Yin, B. F., Tucker, C., & Zhang, Y. M. (2020). Nitrogen pools in soil covered by biological soil crusts of different successional stages in a temperate desert in Central Asia. Geoderma, 366, 114166. https://doi.org/10.1016/j.geoderma.2019.114166
- Zhou, X. J., Ke, T., Li, S. X., Deng, S. Q., An, X. L., Ma, X., De Philippis, R., & Chen, L. Z. (2020). Induced biological soil crusts and soil properties varied between slope aspect, slope gradient and plant canopy in the Hobq desert of China. Catena, 190, 104559. https://doi.org/10.1016/j.catena.2020.104559