Late Holocene glacier reconstruction reveals retreat behind present limits and two-stage Little Ice Age on subantarctic South Georgia
Corresponding Author
Willem G. M. van der Bilt
Department of Earth Science, University of Bergen, Allégaten 41, 5007, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Correspondence to: Willem G. M. van der Bilt, as above.
E-mail: [email protected]
Search for more papers by this authorJostein Bakke
Department of Earth Science, University of Bergen, Allégaten 41, 5007, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Search for more papers by this authorJohannes P. Werner
Department of Earth Science, University of Bergen, Allégaten 41, 5007, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Search for more papers by this authorØyvind Paasche
Bjerknes Centre for Climate Research, Bergen, Norway
Search for more papers by this authorGunhild Rosqvist
Department of Earth Science, University of Bergen, Allégaten 41, 5007, Bergen, Norway
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Search for more papers by this authorSunniva Solheim Vatle
Department of Geography, University of Bergen, Bergen, Norway
Search for more papers by this authorCorresponding Author
Willem G. M. van der Bilt
Department of Earth Science, University of Bergen, Allégaten 41, 5007, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Correspondence to: Willem G. M. van der Bilt, as above.
E-mail: [email protected]
Search for more papers by this authorJostein Bakke
Department of Earth Science, University of Bergen, Allégaten 41, 5007, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Search for more papers by this authorJohannes P. Werner
Department of Earth Science, University of Bergen, Allégaten 41, 5007, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Search for more papers by this authorØyvind Paasche
Bjerknes Centre for Climate Research, Bergen, Norway
Search for more papers by this authorGunhild Rosqvist
Department of Earth Science, University of Bergen, Allégaten 41, 5007, Bergen, Norway
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Search for more papers by this authorSunniva Solheim Vatle
Department of Geography, University of Bergen, Bergen, Norway
Search for more papers by this authorABSTRACT
Observational data show that climate in the Southern Ocean region is rapidly changing. However, past the instrumental period, our understanding of climate variability in the region is limited by a scarcity of high-resolution palaeoclimate records. Alpine glaciers, present on many Southern Ocean islands, may provide such data because changes in their mass balance, extent and erosion rates often mark a response to climate shifts. Rock flour, the fine-grained fraction of the glacial erosion process, is suspended in meltwater streams and transferred into the sediments of downstream lakes, continuously recording glacier variations. Here, we utilize this relationship to present a reconstruction of the Late Holocene glacier history of subantarctic South Georgia, using sediments from the glacier-fed Middle Hamberg Lake. To fingerprint a glacial erosion/size signal, we used titanium counts, validated against changes in sediment density and grain size, allowing a continuous reconstruction of glacier variations over the past ∼1250 years. Together with local moraine evidence and supporting evidence from other Southern Hemisphere glaciers on New Zealand and in Patagonia, our findings reveal a series of consecutively diminishing Late Holocene advances. In addition to a glacier maximum before 1250 cal a BP, these include a two-stage Litle Ice Age with advances around 300 and 120 cal a BP, in line with evidence from southern Patagonia. In addition, we present evidence for an unreported retreat behind present limits around 500 cal BP. Copyright © 2017 John Wiley & Sons, Ltd.
References
- Abram NJ, Mulvaney R, Vimeux F et al. 2014. Evolution of the Southern Annular Mode during the past millennium. Nature Climate Change 4: 564–569 [DOI: 10.1038/nclimate2235].
- Bakke J, Dahl SO, Paasche Ø et al. 2010. A complete record of Holocene glacier variability at Austre Okstindbreen, northern Norway: an integrated approach. Quaternary Science Reviews 29: 1246–1262 [DOI: 10.1016/j.quascirev.2010.02.012].
- Bakke J, Lie Ø, Heegaard E et al. 2009. Rapid oceanic and atmospheric changes during the Younger Dryas cold period. Nature Geoscience 2: 202–205 [DOI: 10.1038/ngeo439].
- Bakke J, Øyvind L, Nesje A et al. 2005. Utilizing physical sediment variability in glacier-fed lakes for continuous glacier reconstructions during the Holocene, northern Folgefonna, western Norway. The Holocene 15: 161–176 [DOI: 10.1191/0959683605hl797rp].
- Balascio NL, D'Andrea WJ, Bradley RS. 2015. Glacier response to North Atlantic climate variability during the Holocene. Climate of the Past 11: 1587–1598 [DOI: 10.5194/cp-11-1587-2015].
- Ballantyne CK. 2002. Paraglacial geomorphology. Quaternary Science Reviews 21: 1935–2017 [DOI: 10.1016/S0277-3791(02)00005-7].
- BAS. 1958. ES2/EWSG/368/28/R4-9. British Antarctic Survey: Cambridge.
- Bentley MJ, Evans DJA, Fogwill CJ et al. 2007. Glacial geomorphology and chronology of deglaciation, South Georgia, sub-Antarctic. Quaternary Science Reviews 26: 644–677 [DOI: 10.1016/j.quascirev.2006.11.019].
- Bertler NAN, Mayewski PA, Carter L. 2011. Cold conditions in Antarctica during the Little Ice Age — implications for abrupt climate change mechanisms. Earth and Planetary Science Letters 308: 41–51 [DOI: 10.1016/j.epsl.2011.05.021].
- Blaauw M. 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5: 512–518 [DOI: 10.1016/j.quageo.2010.01.002].
- Boulton GS. 1978. Boulder shapes and grain-size distributions of debris as indicators of transport paths through a glacier and till genesis. Sedimentology 25: 773–799 [DOI: 10.1111/j.1365-3091.1978.tb00329.x].
- Broecker WS. 2000. Was a change in thermohaline circulation responsible for the Little Ice Age? Proceedings of the National Academy of Sciences of the United States of America 97: 1339–1342 [DOI: 10.1073/pnas.97.4.1339] [PubMed: 10677462].
- Burke EE, Roe GH. 2014. The absence of memory in the climatic forcing of glaciers. Climate Dynamics 42: 1335–1346 [DOI: 10.1007/s00382-013-1758-0].
- Carrivick JL, Tweed FS. 2013. Proglacial lakes: character, behaviour and geological importance. Quaternary Science Reviews 78: 34–52 [DOI: 10.1016/j.quascirev.2013.07.028].
- Carvalho LMV, Jones C, Ambrizzi T. 2005. Opposite phases of the Antarctic oscillation and relationships with intraseasonal to interannual activity in the tropics during the austral summer. Journal of Climate 18: 702–718 [DOI: 10.1175/JCLI-3284.1].
- Chambers FM, Brain SA, Mauquoy D et al. 2014. The ‘Little Ice Age’ in the Southern Hemisphere in the context of the last 3000 years: peat-based proxy-climate data from Tierra del Fuego. The Holocene 24: 1649–1656 [DOI: 10.1177/0959683614551232].
- Christ AJ, Talaia-Murray M, Elking N et al. 2015. Late Holocene glacial advance and ice shelf growth in Barilari Bay, Graham Land, west Antarctic Peninsula. Geological Society of America Bulletin 127: 297–315 [DOI: 10.1130/B31035.1].
- Clapperton CM. 1971. Geomorphology of the Stromness–Bay–Cumberland Bay area, South Georgia. British Antarctic Survey Scientific Reports 70: 36.
- Clapperton CM. 1990. Quaternary glaciations in the Southern Ocean and Antarctic peninsula area. Quaternary Science Reviews 9: 229–252 [DOI: 10.1016/0277-3791(90)90020-B].
- Clapperton CM, Sugden DE. 1980 Geomorphology of the St. Andrews–Bay–Royal Bay Area, South Georgia. British Antarctic Survey: Cambridge.
- Clapperton CM, Sugden DE. 1988. Holocene glacier fluctuations in South America and Antarctica. Quaternary Science Reviews 7: 185–198 [DOI: 10.1016/0277-3791(88)90005-4].
- Clapperton CM, Sugden DE, Birnie J et al. 1989. Late-glacial and Holocene glacier fluctuations and environmental change on South Georgia, Southern Ocean. Quaternary Research 31: 210–228 [DOI: 10.1016/0033-5894(89)90006-9].
- Clayton R. 1982. A preliminary investigation of the geochemistry of greywackes from South Georgia. British Antarctic Survey Bulletin 51: 89–109.
- Cook AJ, Fox AJ, Vaughan DG et al. 2005. Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308: 541–544 [DOI: 10.1126/science.1104235] [PubMed: 15845851].
- Cook AJ, Poncet S, Cooper APR et al. 2010. Glacier retreat on South Georgia and implications for the spread of rats. Antarctic Science 22: 255–263 [DOI: 10.1017/S0954102010000064].
- Croudace IW, Rindby A, Rothwell RG. 2006. ITRAX: description and evaluation of a new multi-function X-ray core scanner. Special Publication Geological Society of London 267: 51.
- Dahl SO, Bakke J, Lie Ø et al. 2003. Reconstruction of former glacier equilibrium-line altitudes based on proglacial sites: an evaluation of approaches and selection of sites. Quaternary Science Reviews 22: 275–287 [DOI: 10.1016/S0277-3791(02)00135-X].
- Dean, Jr WE. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Research 44.
- Dearing J, Hu Y, Doody P et al. 2001. Preliminary reconstruction of sediment-source linkages for the past 6000 yr at the Petit Lac d'Annecy, France, based on mineral magnetic data. Journal of Paleolimnology 25: 245–258 [DOI: 10.1023/A:1008186501993].
- Ding Q, Steig EJ, Battisti DS et al. 2012. Influence of the tropics on the Southern Annular Mode. Journal of Climate 25: 6330–6348 [DOI: 10.1175/JCLI-D-11-00523.1].
- Diodato N, Støren EWN, Bellocchi G et al. 2013. Modelling sediment load in a glacial meltwater stream in western Norway. Journal of Hydrology 486: 343–350 [DOI: 10.1016/j.jhydrol.2013.02.011].
- Domack EW, Ishman SE, Stein AB et al. 1995. Late Holocene advance of the Müller Ice Shelf, Antarctic Peninsula: sedimentological, geochemical and palaeontological evidence. Antarctic Science 7: 159–170.
- Domack EW, Mayewski PA. 1999. Bi-polar ocean linkages: evidence from late-Holocene Antarctic marine and Greenland ice-core records. Holocene 9: 247–251 [DOI: 10.1191/095968399675385468].
- Eyles N, Mullins HT, Hine AC. 1991. The seismic stratigraphy of Okanagan Lake, British Columbia; a record of rapid deglaciation in a deep ‘fiord-lake’ basin. Sedimentary Geology 73: 13–41 [DOI: 10.1016/0037-0738(91)90021-5].
- Fogt RL, Bromwich DH, Hines KM. 2011. Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dynamics 36: 1555–1576 [DOI: 10.1007/s00382-010-0905-0].
- Foster LC, Pearson EJ, Juggins S et al. 2016. Development of a regional glycerol dialkyl glycerol tetraether (GDGT)–temperature calibration for Antarctic and sub-Antarctic lakes. Earth and Planetary Science Letters 433: 370–379 [DOI: 10.1016/j.epsl.2015.11.018].
- Garreaud RD. 2007. Precipitation and circulation covariability in the extratropics. Journal of Climate 20: 4789–4797 [DOI: 10.1175/JCLI4257.1].
- Gille ST. 2002. Warming of the Southern Ocean since the 1950s. Science 295: 1275–1277 [DOI: 10.1126/science.1065863] [PubMed: 11847337].
- Glasser NF, Harrison S, Jansson KN et al. 2011. Global sea-level contribution from the Patagonian Icefields since the Little Ice Age maximum. Nature Geoscience 4: 303–307 [DOI: 10.1038/ngeo1122].
- Gordon J. 1987. Radiocarbon dates from Nordenskjold Glacier, South Georgia, and their implications for Late Holocene glacier chronology. British Antarctic Survey Bulletin 76: 1–5.
- Gordon JE, Haynes VM, Hubbard A. 2008. Recent glacier changes and climate trends on South Georgia. Global and Planetary Change 60: 72–84 [DOI: 10.1016/j.gloplacha.2006.07.037].
- Gordon JE, Timmis RJ. 1992. Glacier fluctuations on South Georgia during the 1970s and early 1980s. Antarctic Science 4: 215–226 [DOI: 10.1017/S0954102092000336].
- Grimm E. 2011. Tilia software v. 1.7. 16. Illinois State Museum: Springfield, IL.
- Hall BL, Koffman T, Denton GH. 2010. Reduced ice extent on the western Antarctic Peninsula at 700–970 cal. yr B.P. Geology 38: 635–638 [DOI: 10.1130/G30932.1].
-
Hallet B.
1979.
A theoretical model of glacial abrasion.
Journal of Glaciology
23: 39–50.
10.3189/S0022143000029725 Google Scholar
- Harbor J, Warburton J. 1993. Relative rates of glacial and nonglacial erosion in alpine environments. Arctic and Alpine Research 25: 1–7 [DOI: 10.2307/1551473].
- Hayward R. 1983. Glacier fluctuations in South Georgia, 1883–1974. British Antarctic Survey Bulletin 52: 47–61.
- Herman F, Beyssac O, Brughelli M et al. 2015. Erosion by an Alpine glacier. Science 350: 193–195 [DOI: 10.1126/science.aab2386] [PubMed: 26450208].
- Hogg AG, Hua Q, Blackwell PG et al. 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 54: 1889–1903.
- Hua Q, Barbetti M, Rakowski AZ. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55: 2059–2072 [DOI: 10.2458/azu_js_rc.v55i2.16177].
- IPCC. 2013. The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Tignor K, Allen M, Boschung SK, et al. (eds): 1535. https://www.ipcc.ch/report/ar5/
- Jóhannesson T, Raymond CF, Waddington ED. 1989. A simple method for determining the response time of glaciers. In Glacier Fluctuations and Climatic Change, J Oerlemans (ed.). Springer: Dordrecht; 343–352.
- Jones KPN, McCave IN, Patel D. 1988. A computer-interfaced sedigraph for modal size analysis of fine-grained sediment. Sedimentology 35: 163–172 [DOI: 10.1111/j.1365-3091.1988.tb00910.x].
- Kaplan MR, Schaefer JM, Strelin JA et al. 2016. Patagonian and southern South Atlantic view of Holocene climate. Quaternary Science Reviews 141: 112–125 [DOI: 10.1016/j.quascirev.2016.03.014].
- Karlén W. 1976. Lacustrine sediments and tree-limit variations as indicators of Holocene climatic fluctuations in Lappland, northern Sweden. Geografiska Annaler, Series A: Physical Geography 58: 1–34.
- Kylander ME, Ampel L, Wohlfarth B et al. 2011. High-resolution X-ray fluorescence core scanning analysis of les Echets (France) sedimentary sequence: new insights from chemical proxies. Journal of Quaternary Science 26: 109–117 [DOI: 10.1002/jqs.1438].
- Lamy F, Kilian R, Arz HW et al. 2010. Holocene changes in the position and intensity of the southern westerly wind belt. Nature Geoscience 3: 695–699 [DOI: 10.1038/ngeo959].
- Lanci L, Lowrie W. 1997. Magnetostratigraphic evidence that ‘tiny wiggles’ in the oceanic magnetic anomaly record represent geomagnetic paleointensity variations. Earth and Planetary Science Letters 148: 581–592 [DOI: 10.1016/S0012-821X(97)00055-1].
-
Leemann A,
Niessen F.
1994a.
Holocene glacial activity and climatic variations in the Swiss Alps: reconstructing a continuous record from proglacial lake sediments.
The Holocene
4: 259–268 [DOI: 10.1177/095968369400400305].
10.1177/095968369400400305 Google Scholar
-
Leemann A,
Niessen F.
1994b.
Varve formation and the climatic record in an Alpine proglacial lake: calibrating annually laminated sediments against hydrological and meteorological data.
The Holocene
4: 1–8 [DOI: 10.1177/095968369400400101].
10.1177/095968369400400101 Google Scholar
- Leonard EM. 1997. The relationship between glacial activity and sediment production: evidence from a 4450-year varve record of neoglacial sedimentation in Hector Lake, Alberta, Canada. Journal of Paleolimnology 17: 319–330.
- Liermann S, Beylich AA, van Welden A. 2012. Contemporary suspended sediment transfer and accumulation processes in the small proglacial Sætrevatnet sub-catchment, Bødalen, western Norway. Geomorphology 167–168: 91–101.
- Macdonald D, Storey B, Thomson J. 1987. South Georgia. BAS GEOMAP Series, Sheet 1, Scale 1: 250000, Geological map and supplementary text. British Antarctic Survey.
- Maher BA, Taylor RM. 1988. Formation of ultrafine-grained magnetite in soils. Nature 336: 368–370 [DOI: 10.1038/336368a0].
- Mann ME, Zhang Z, Rutherford S et al. 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326: 1256–1260 [DOI: 10.1126/science.1177303] [PubMed: 19965474].
- Marcott SA, Shakun JD, Clark PU et al. 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science 339: 1198–1201 [DOI: 10.1126/science.1228026] [PubMed: 23471405].
- Marshall GJ. 2003. Trends in the Southern Annular Mode from observations and reanalyses. Journal of Climate 16: 4134–4143 [DOI: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2].
- Masiokas MH, Luckman BH, Villalba R et al. 2009a. Little Ice Age fluctuations of small glaciers in the Monte Fitz Roy and Lago del Desierto areas, south Patagonian Andes, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 281: 351–362 [DOI: 10.1016/j.palaeo.2007.10.031].
- Masiokas MH, Rivera A, Espizua LE et al. 2009b. Glacier fluctuations in extratropical South America during the past 1000years. Palaeogeography, Palaeoclimatology, Palaeoecology 281: 242–268 [DOI: 10.1016/j.palaeo.2009.08.006].
- Masiokas MH, Villalba R, Luckman BH et al. 2008. 20th-century glacier recession and regional hydroclimatic changes in northwestern Patagonia. Global and Planetary Change 60: 85–100 [DOI: 10.1016/j.gloplacha.2006.07.031].
- McKay NP, Kaufman DS. 2009. Holocene climate and glacier variability at Hallet and Greyling Lakes, Chugach Mountains, south-central Alaska. Journal of Paleolimnology 41: 143–159 [DOI: 10.1007/s10933-008-9260-0].
- Menounos B. 1997. The water content of lake sediments and its relationship to other physical parameters: an alpine case study. The Holocene 7: 207–212 [DOI: 10.1177/095968369700700208].
- Montgomery DC. 2008. Design and analysis of experiments. John Wiley & Sons.
- Moreno PI, Francois JP, Moy CM et al. 2010. Covariability of the Southern Westerlies and atmospheric CO2 during the Holocene. Geology 38: 727–730 [DOI: 10.1130/G30962.1].
- Moreno PI, Vilanova I, Villa-Martínez R et al. 2014. Southern Annular Mode-like changes in southwestern Patagonia at centennial timescales over the last three millennia. Nature Communications 5: 4375 [DOI: 10.1038/ncomms5375] [PubMed: 25007832].
- Moreton SG, Rosqvist GC, Davies SJ et al. 2004. Radiocarbon reservoir ages from freshwater lakes, South Georgia, sub-Antarctic: modern analogues from particulate organic matter and surface sediments. Radiocarbon 46: 621–626 [DOI: 10.1017/S0033822200035669].
- Moy CM, Dunbar RB, Moreno PI et al. 2008. Isotopic evidence for hydrologic change related to the westerlies in SW Patagonia, Chile, during the last millennium. Quaternary Science Reviews 27: 1335–1349 [DOI: 10.1016/j.quascirev.2008.03.006].
- Mulvaney R, Abram NJ, Hindmarsh RC et al. 2012. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature 489: 141–144 [DOI: 10.1038/nature11391] [PubMed: 22914090].
- Nesje A. 1992. A piston corer for lacustrine and marine sediments. Arctic and Alpine Research 24: 257–259 [DOI: 10.2307/1551667].
- Neukom R, Gergis J, Karoly DJ et al. 2014. Inter-hemispheric temperature variability over the past millennium. Nature Climate Change 4: 362–367 [DOI: 10.1038/nclimate2174].
- Noon PE, Leng MJ, Jones VJ. 2003. Oxygen-isotope (δ18O) evidence of Holocene hydrological changes at Signy Island, maritime Antarctica. Holocene 13: 251–263 [DOI: 10.1191/0959683603hl611rp].
- Oerlemans J. 2005. Extracting a climate signal from 169 glacier records. Science 308: 675–677 [DOI: 10.1126/science.1107046] [PubMed: 15746388].
- Orsi AH, Whitworth T, Nowlin WD. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Research Part I: Oceanographic Research Papers 42: 641–673 [DOI: 10.1016/0967-0637(95)00021-W].
- PAGES2K. 2013. Continental-scale temperature variability during the past two millennia. Nature Geoscience 6: 339–346.
-
Paillard D,
Labeyrie L,
Yiou P.
1996.
Analyseries 1.0: a Macintosh software for the analysis of geographical time-series.
Eos, Transactions American Geophysical Union
77: 379 [DOI: 10.1029/96EO00259].
10.1029/96EO00259 Google Scholar
- Paterson W. 1994. The Physics of Glaciers. Butterworth-Heinemann: London.
- Peach PA, Perrie LA. 1975. Grain-size distribution within glacial varves. Geology 3: 43–46 [DOI: 10.1130/0091-7613(1975)3<43:GDWGV>2.0.CO;2].
- Purdie H, Anderson B, Chinn T et al. 2014. Franz Josef and Fox Glaciers, New Zealand: historic length records. Global and Planetary Change 121: 41–52 [DOI: 10.1016/j.gloplacha.2014.06.008].
- Raper SCB, Braithwaite RJ. 2009. Glacier volume response time and its links to climate and topography based on a conceptual model of glacier hypsometry. The Cryosphere 3: 183–194 [DOI: 10.5194/tc-3-183-2009].
- Roberts SJ, Hodgson DA, Shelley S et al. 2010. Establishing lichenometric ages for nineteenth- and twentieth-century glacier fluctuations on South Georgia (South Atlantic). Geografiska Annaler: Series A, Physical Geography 92: 125–139 [DOI: 10.1111/j.1468-0459.2010.00382.x].
- Roland E, Haakensen N. 1985. Glasiologiske undersøkelser i Norge 1982. Rapport-Norges Vassdrags-og Elektrisitetsvesen, Hydrologisk Avdeling.
- Rosqvist GC, Schuber P. 2003. Millennial-scale climate changes on south Georgia, Southern Ocean. Quaternary Research 59: 470–475 [DOI: 10.1016/S0033-5894(03)00036-X].
- Rubensdotter L, Rosqvist G. 2009. Influence of geomorphological setting, fluvial-, glaciofluvial- and mass-movement processes on sedimentation in alpine lakes. The Holocene 19: 665–678 [DOI: 10.1177/0959683609104042].
- Ryżak M, Bieganowski A. 2011. Methodological aspects of determining soil particle-size distribution using the laser diffraction method. Journal of Plant Nutrition and Soil Science 174: 624–633 [DOI: 10.1002/jpln.201000255].
-
Sandgren P,
Snowball I.
2002. Application of mineral magnetic techniques to paleolimnology. In
Tracking Environmental Change Using Lake Sediments, W Last, J Smol(eds).
Springer:
Dordrecht; 217–237.
10.1007/0-306-47670-3_8 Google Scholar
- SCAR. 2015. Antarctic Digital Database, Version 6.0. Database, Manual and Bibliography. http://www.add.scar.org/
- Schaefer JM, Denton GH, Kaplan M et al. 2009. High-frequency Holocene glacier fluctuations in New Zealand differ from the northern signature. Science 324: 622–625 [DOI: 10.1126/science.1169312] [PubMed: 19407198].
- Shevenell AE, Ingalls AE, Domack EW et al. 2011. Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula. Nature 470: 250–254 [DOI: 10.1038/nature09751] [PubMed: 21307939].
- Simonneau A, Chapron E, Garçon M et al. 2014. Tracking Holocene glacial and high-altitude alpine environments fluctuations from minerogenic and organic markers in proglacial lake sediments (Lake Blanc Huez, Western French Alps). Quaternary Science Reviews 89: 27–43 [DOI: 10.1016/j.quascirev.2014.02.008].
-
Smith J.
1960.
Glacier problems in South Georgia.
Journal of Glaciology
3: 707–714.
10.1017/S0022143000018001 Google Scholar
- Solomina ON, Bradley RS, Hodgson DA et al. 2015. Holocene glacier fluctuations. Quaternary Science Reviews 111: 9–34 [DOI: 10.1016/j.quascirev.2014.11.018].
- Solomina ON, Bradley RS, Jomelli V et al. 2016. Glacier fluctuations during the past 2000 years. Quaternary Science Reviews 149: 61–90 [DOI: 10.1016/j.quascirev.2016.04.008].
- South Georgia Geographic Information System (SGGIS). 2013. http://add.antarctica.ac.uk/home/sggis
- Sperazza M, Moore JN, Hendrix MS. 2004. High-resolution particle size analysis of naturally occurring very fine-grained sediment through laser diffractometry. Journal of Sedimentary Research 74: 736–743 [DOI: 10.1306/031104740736].
- Strelin JA, Kaplan MR, Vandergoes MJ et al. 2014. Holocene glacier history of the Lago Argentino basin, Southern Patagonian Icefield. Quaternary Science Reviews 101: 124–145 [DOI: 10.1016/j.quascirev.2014.06.026].
- Strother SL, Salzmann U, Roberts SJ et al. 2015. Changes in Holocene climate and the intensity of Southern Hemisphere Westerly winds based on a high-resolution palynological record from sub-Antarctic South Georgia. The Holocene 25: 263–279 [DOI: 10.1177/0959683614557576].
- Sundqvist HS, Kaufman DS, McKay NP et al. 2014. Arctic Holocene proxy climate database–new approaches to assessing geochronological accuracy and encoding climate variables. Climate of the Past Discussions 10: 1–63 [DOI: 10.5194/cpd-10-1-2014].
- Swart NC, Fyfe JC. 2012. Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophysical Research Letters: n/a 39 [DOI: 10.1029/2012GL052810].
- Thompson DW, Solomon S. 2002. Interpretation of recent Southern Hemisphere climate change. Science 296: 895–899 [DOI: 10.1126/science.1069270] [PubMed: 11988571].
- Thompson DWJ, Solomon S, Kushner PJ et al. 2011. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geoscience 4: 741–749 [DOI: 10.1038/ngeo1296].
- Thompson R, Battarbee RW, O'Sullivan PE et al. 1975. Magnetic susceptibility of lake sediments. Limnology and Oceanography 20: 687–698 [DOI: 10.4319/lo.1975.20.5.0687].
- Trouet V, Van Oldenborgh GJ. 2013. KNMI Climate Explorer: a web-based research tool for high-resolution paleoclimatology. Tree-Ring Research 69: 3–13 [DOI: 10.3959/1536-1098-69.1.3].
- van der Bilt WGM, Bakke J, Vasskog K et al. 2015. Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard. Quaternary Science Reviews 126: 201–218 [DOI: 10.1016/j.quascirev.2015.09.003].
- Vasskog K, Nesje A, Støren EN et al. 2011. A Holocene record of snow-avalanche and flood activity reconstructed from a lacustrine sedimentary sequence in Oldevatnet, western Norway. The Holocene 21: 597–614.
- Vasskog K, Paasche Ø, Nesje A et al. 2012. A new approach for reconstructing glacier variability based on lake sediments recording input from more than one glacier. Quaternary Research 77: 192–204 [DOI: 10.1016/j.yqres.2011.10.001]. http://www.add.scar.org/
- Vaughan DG, Marshall GJ, Connolley WM et al. 2003. Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change 60: 243–274 [DOI: 10.1023/A:1026021217991].
- Verfaillie D, Favier V, Dumont M et al. 2015. Recent glacier decline in the Kerguelen Islands (49°S, 69°E) derived from modeling, field observations, and satellite data. Journal of Geophysical Research: Earth Surface 120: 637–654 [DOI: 10.1002/2014JF003329].
- Villalba R. 1994. Tree-ring and glacial evidence for the Medieval Warm Epoch and the Little Ice Age in southern South America. Climate Change 26: 183–197.
- Wang G, Cai W. 2013. Climate-change impact on the 20th-century relationship between the Southern Annular Mode and global mean temperature. Scientific Reports 3: 2039 [DOI: 10.1038/srep02039] [PubMed: 23784087]
- Wittmeier HE, Bakke J, Vasskog K et al. 2015. Reconstructing Holocene glacier activity at Langfjordjøkelen, Arctic Norway, using multi-proxy fingerprinting of distal glacier-fed lake sediments. Quaternary Science Reviews 114: 78–99 [DOI: 10.1016/j.quascirev.2015.02.007].