Amorphous Solid Dispersions: Utilization and Challenges in Drug Discovery and Development
Corresponding Author
Yan He
Pre-Development Sciences, LGCR, Waltham, Massachusetts, 02451
Telephone: +781-434-3581; Fax: +781-466-3788; E-mail: [email protected]Search for more papers by this authorChris Ho
Pre-Development Sciences, LGCR, Waltham, Massachusetts, 02451
Search for more papers by this authorCorresponding Author
Yan He
Pre-Development Sciences, LGCR, Waltham, Massachusetts, 02451
Telephone: +781-434-3581; Fax: +781-466-3788; E-mail: [email protected]Search for more papers by this authorChris Ho
Pre-Development Sciences, LGCR, Waltham, Massachusetts, 02451
Search for more papers by this authorAbstract
Amorphous solid dispersion (ASD) can accelerate a project by improving dissolution rate and solubility, offering dose escalation flexibility and excipient acceptance for toxicology studies, as well as providing adequate preclinical and clinical exposure. The prerequisite physicochemical properties for a compound to form a stable ASD are glass-forming ability and low-crystallization tendency, which can be assessed using computational tools and experimental methods. Polymer excipient screening by in silico miscibility prediction and experimental screening techniques is discussed. Improved technologies for polymer screening with minimal quantity of drug substance, and the scalability of ASD from bench to commercial are reviewed. Considerations of in vitro evaluations, preclinical animal selection, and the translation of the preclinical results to clinical studies are also discussed. Better understanding of how polymers improve the stability of the amorphous phase in the solid state and how ASD improves bioavailability have facilitated the applications of ASD ranging from discovery research to preclinical development and further to commercialization. With the understanding of how ASDs are currently used in the pharmaceutical industry and what challenges remain to be solved, ASD can be applied to solve drug formulation problems at given research and development stages. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3237–3258, 2015
REFERENCES
- 1Di L, Fish PV, Mano T. 2012. Bridging solubility between drug discovery and development. Drug Discov Today 17: 486–495.
- 2Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJ. 2013. Strategies to address low drug solubility in discovery and development. Pharmacol Rev 65(1): 315–499.
- 3Neervannan S. 2006. Preclinical formulations for discovery and toxicology: Physicochemical challenges. Expert Opin Drug Metab Toxicol 2(5): 715–731.
- 4Maas J, Kamm W, Hauck G. 2007. An integrated early formulation strategy—From hit evaluation to preclinical candidate profiling. Eur J Pharm Biopharm 66(1): 1–10.
- 5Lohani S, Cooper H, Jin X, Nissley BP, Manser K, Rakes LH, Cummings JJ, Fauty SE, Bak A. 2014. Physicochemical properties, form, and formulation selection strategy for a biopharmaceutical classification system class II preclinical drug candidate. J Pharm Sci 103(10): 3007–3021.
- 6Stegemann S, Leveiller F, Franchi D, de Jong H, Lindén H. 2007. When poor solubility becomes an issue: From early stage to proof of concept. Eur J Pharm Sci 31(5): 249–261.
- 7Yalkowsky SH. 2012. Perspective on improving passive human intestinal absorption. J Pharm Sci 101(9): 3047–3050.
- 8Janssens S, Van den Mooter G. 2009. Physical chemistry of solid dispersions. J Pharm Pharmacol 61(12): 1571–1586.
- 9Padden, BE, Miller, JM, Robbins T, Zocharski PD, Prasad L, Spence JK, LaFountaine J. 2011. Amorphous solid dispersions as enabling formulations for discovery and early development. Am Pharm Rev 14(1): 66, 68–70, 72–73.
- 10Das SK, Roy S, Kalimuthu Y, Khanam J, Nanda A. 2011. Solid dispersions: An approach to enhance the bioavailability of poorly water-soluble drugs. Int J Pharmacol Pharma Technol 1(1): 37–46.
- 11Sareen S, Mathew G, Joseph L. 2012. Improvement in solubility of poor water-soluble drugs by solid dispersion. Int J Pharm Investig 2(1): 12–17.
- 12Sharma M, Garg R, Gupta GD. 2013. Formulation and evaluation of solid dispersion of atorvastatin calcium. J Pharm Sci Innovation 2(4): 73–81.
10.7897/2277-4572.02459 Google Scholar
- 13Shah N, Sandhu H, Phuapradit W, Pinal R, Iyer R, Albano A, Chatterji A, Anand S, Choi DS, Tang K, Tian H, Chokshi H, Singhal D, Malick W. 2012. Development of novel microprecipitated bulk powder (MBP) technology for manufacturing stable amorphous formulations of poorly soluble drugs. Int J Pharm 438(1–2): 53–60.
- 14Patel RC, Masnoon S, Patel MM, Patel NM. 2009. Formulation strategies for improving drug solubility using solid dispersions. Pharm Rev 7(6): 1918–1922.
- 15Ormes JD, Zhang D, Chen AM, Hou S, Krueger D, Nelson T, Templeton A. 2013. Design of experiments utilization to map the processing capabilities of a micro-spray dryer: Particle design and throughput optimization in support of drug discovery. Pharm Dev Technol 18(1): 121–129.
- 16Gaspar F. 2014. Spray drying in the pharmaceutical industry. Eur Pharm Rev 19(5): 45–48.
- 17Siew A. 2014. Solving poor solubility with amorphous solid dispersions. Pharm Tech 38(10).
- 18Sekiguchi K, Obi N. 1961. Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull 9(11): 866–872.
- 19Chiou WL, Riegelman S. 1971. Pharmaceutical applications of solid dispersion systems. J Pharm Sci 60(9): 1281–1302.
- 20Goldberg AH, Gibaldi M, Kanig JL. 1966. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures II. Experimental evaluation of eutectic mixture: Urea-acetaminophen system. J Pharm Sci 55(5): 482–487.
- 21Goldberg AH, Gibaldi M, Kanig JL. 1966. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures III. Experimental evaluation of griseofulvin-succinic acid solution. J Pharm Sci 55(5): 487–492.
- 22Serajuddin ATM. 1999. Solid dispersion of poorly water-soluble drugs: Early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 88(10): 1058–1066.
- 23Leuner C, Dressman J. 2000. Improving drug solubility for oral delivery using solid dispersion. Eur J Pharm Biopharm Sci 50(1): 47–60.
- 24Newman A, Knipp G, Zografi G. 2012. Assessing the performance of amorphous solid dispersions. J Pharm Sci 101(4): 1355–1377.
- 25Taylor L, Hancock B. 2014. George Zografi and the science of solids and surfaces. J Pharm Sci 103(9): 2592–2594.
- 26Palucki M, Higgins J, Kwong E, Templeton A. 2010. Strategies at the interface of drug discovery and development: Early optimization of the solid state phase and preclinical toxicology formulation for potential drug candidates. J Med Chem 53: 5897–5905.
- 27Chen XQ, Stefanski K, Shen H, Huang C, Caporuscio C, Yang W, Lam P, Su C, Gudmundsson O, Hageman M. 2014. Oral delivery of highly lipophilic poorly water-soluble drugs: Spray-dried dispersions to improve oral absorption and enable high-dose toxicology studies of a P2Y1 antagonist. J Pharm Sci 103(12): 3924–3931.
- 28Konno K, Taylor LS. 2006. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci 95(12): 2692–2705.
- 29DiNunzio JC, Hughey JR, Brough C, Miller DA, Williams RO 3rd, McGinity JW. 2010. Production of advanced solid dispersions for enhanced bioavailability of itraconazole using KinetiSol dispersing. Drug Dev Ind Pharm 36(9): 1064–1078.
- 30Janssens S, De Zeure A, Paudel A, Van Humbeeck J, Rombaut P, Van den Mooter G. 2010. Influence of preparation methods on solid state supersaturation of amorphous solid dispersions: A case study with itraconazole and Eudragit E100. Pharm Res 27(5): 775–785.
- 31Frank KJ, Westedt U, Rosenblatt KM, Hoelig P, Rosenberg J, Maegerlein M, Fricker G, Brandl M. 2014. What is the mechanism behind increased permeation rate of a poorly soluble drug from aqueous dispersions of an amorphous solid dispersion? J Pharm Sci 103(6): 1779–1786.
- 32Lian X, Dong J, Zhang J, Teng Y, Lin Q, Fu Y, Gong T. 2014. Soluplus based 9-nitrocamptothecin solid dispersion for peroral administration: Preparation, characterization, in vitro and in vivo evaluation. Int J Pharm 477(1–2): 399–407.
- 33Guzmán H, Tawa M, Zhang Z, Ratanabanangkoon P, Shaw P, Mustonen P, Gardner C, Chen H, Moreau J, Almarsson O, Remenar J. 2004. A “spring and parachute” approach to designing solid celecoxib formulations having enhanced oral absorption. AAPS J 6:Abstract T2189.
- 34Guzmán HR, Tawa M, Zhang Z, Ratanabanang-koon P, Shaw P, Gardner CR, Chen H, Moreau J, Almarsson O, Remenar JF. 2007. Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. J Pharm Sci 96(10): 2686–2702.
- 35Hancock BC, Parks M. 2000. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res 17(4): 397–404.
- 36Percy SR. 1872. Improvement in drying and concentrating liquid substances by atomizing. Patent US 125406 A
- 37Masters K. 2002. Spray drying in practice, SprayDryConsult International, Denmark.
- 38Kornblum SS, Hirschorn JO. 1970. Dissolution of poorly water-soluble drugs I: Some physical parameters related to method of micronization and tablet manufacture of a quinazolinone compound. J Pharm Sci 59(5): 606–609.
- 39Chan HK, Kwok PCL. 2011. Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev 63: 406–416.
- 40Kolašinac N, Kachrimanis K, Djuriš J, Homšek I, Grujić B, Ibrić S. 2013. Spray coating as a powerful technique in preparation of solid dispersions with enhanced desloratadine dissolution rate. Drug Dev Ind Pharm 39(7): 1020–1027.
- 41Knopp MM, Olesen NE, Holm P, LÖBmann K, Holm R, Langguth P, Rades T. 2015. Evaluation of drug–polymer solubility curves through formal statistical analysis: Comparison of preparation techniques. J Pharm Sci 104(1): 44–51.
- 42Ayad MH, Bonnet B, Quinton J, Leigh M, Poli SM. 2013. Amorphous solid dispersion successfully improved oral exposure of ADX71943 in support of toxicology studies. Drug Dev Ind Pharm 39(9): 1300–1305.
- 43Law D, Schmitt EA, Marsh KC, Everitt EA, Wang W, Fort JJ, Krill SL, Qiu Y. 2004. Ritonavir-PEG 8000 amorphous solid dispersions: In vitro and in vivo evaluations. J Pharm Sci 93(3): 563–570.
- 44Liepold B, Jung T, Holig P, Schroeder R, Sever NE, Lafountaine J, Sinclair BD, Gao Y, Wu J, Erickson BK, Kullmann S, Wstedt U, Pauli M, Meitermann T, Koenig R, Thiei M. 2011. Solid compositions of a hepatitis C virus inhibitor. Patent WO 2011156578 A1.
- 45Fakes MG, Vakkalagadda BJ, Qian F, Desikan S, Gandhi RB, Lai C, Hsieh A, Franchini MK, Toale H, Brown J. 2009. Enhancement of oral bioavailability of an HIV-attachment inhibitor by nanosizing and amorphous formulation approaches. Int J Pharm 370(1–2): 167–174.
- 46Vickery RD, Stefanski KJ, Su CC, Hageman MJ, Vig BS, Betigeri S. 2013. Bioavailable compositions of an amorphous solid dispersions of a piperidinyl compound for capsules and tablets. Patent WO 2013013114 A1.
- 47Sotthivirat S, McKelvey C, Moser J, Rege B, Xu W, Zhang D. 2013. Development of amorphous solid dispersion formulations of a poorly water-soluble drug, MK-0364. Int J Pharm 452(1–2): 73–81.
- 48Zheng W, Jain A, Papoutsakis D, Dannenfelser RM, Panicucci R, Garad S. 2012. Selection of oral bioavailability enhancing formulations during drug discovery. Drug Dev Ind Pharm 38(2): 235–247.
- 49Ruggeri RB, Magnus-Aryitey G, Shanker RM, Lorenz DA, Garr CD. 2006. Preparation of substituted benzylamino-1,2,3,4-tetrahydroquinoline derivatives for use as cholesterol lowering agents. Patent wUS 20060063803 A1.
- 50Curatolo WJ, Friesen DT, Sutton SC. 2005. Controlled release dosage forms containing cholesteryl ester transfer protein inhibitors and immediate release of HMG-CoA reductase inhibitors. Patent WO 2005011634 A1.
- 51Chiang PC, Ran Y, Chou KJ, Cui Y, Sambrone A, Chan C, Hart R. 2012. Evaluation of drug load and polymer by using a 96-well plate vacuum dry system for amorphous solid dispersion drug delivery. AAPS Pharm Sci Tech 13(2): 713–722.
- 52Cui Y, Chiang PC, Choo EF, Boggs J, Rudolph J, Grina J, Wenglowsky S, Ran Y. 2013. Systemic in vitro and in vivo evaluation for determining the feasibility of making an amorphous solid dispersion of a B-Raf (rapidly accelerated fibrosarcoma) inhibitor. Int J Pharm 454(1): 241–248.
- 53Greco S, Authelin JR, Leveder C, Segalini A. 2012. A practical method to predict physical stability of amorphous solid dispersions. Pharm Res 29(10): 2792–2805.
- 54Jacobs IC, Higgins JD, Guillot M, Franson NM, Rocco WL, Abu-Izza, KA. 2007. Preparation of amorphous solid dispersions of 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide. Patent WO 2007027494 A2.
- 55Kwong AD, Kauffman RS, Hurter P, Mueller P. 2011. Discovery and development of telaprevir: An NS3–4A protease inhibitor for treating genotype 1 chronic hepatitis C virus. Nat Biotechnol 29(11): 993–1003.
- 56Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JA. 2008. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: An overview. Mol Pharm 5(6): 1003–1019.
- 57Kawakami K, Usui T, Hattori M. 2012. Understanding the glass-forming ability of active pharmaceutical ingredients for designing supersaturating dosage forms. J Pharm Sci 101(9): 3239–3248.
- 58Zhou D, Zhang GG, Law D, Grant DJ, Schmitt EA. 2002. Physical stability of amorphous pharmaceuticals: Importance of configurational thermodynamic quantities and molecular mobility. J Pharm Sci 91(8): 1863–1872.
- 59Mahlin D, Ponnambalam S, Höckerfelt MH, Bergström CA. 2011. Toward in silico prediction of glass-forming ability from molecular structure alone: A screening tool in early drug development. Mol Pharm 8(2): 498–506.
- 60Mahlin D, Bergstrom CA. 2013. Early drug development predictions of glass-forming ability and physical stability of drugs. Eur J Pharm Sci 49(2): 323–332.
- 61Amjad A, Alzghoul A, Kaialy W, Mahlin D, Bergstroem CA. 2014. Computational predictions of glass-forming ability and crystallization tendency of drug molecules. Mol Pharm 11(9): 3123–3132.
- 62Trasi NS, Baird JA, Kestur US, Taylor LS. 2014. Factors influencing crystal growth rates from undercooled liquids of pharmaceutical compounds. J Phys Chem B 118(33): 9974–9982.
- 63Hancock BC, Zografi G. 1997. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86(1): 1–12.
- 64Baird JA, Van Eerdenbrugh B, Taylor LS. 2010. A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci 99(9): 3787–3806.
- 65Kawakami K, Harada T, Miura K, Yoshihashi Y, Yonemochi E, Terada K, Moriyama H. 2014. Relationship between crystallization tendencies during cooling from melt and is Periodicalmal storage: Toward a general understanding of physical stability of pharmaceutical glasses. Mol Pharm 11(6): 1835–1843.
- 66Kauzmann W. 1948. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev 115(2): 219–256.
- 67Beaman RG. 1952. Relation between (apparent) second-order transition temperature and melting point. J Polym Sci 9(5): 470–472.
- 68Boyer RF. 1963. The relation of transition temperatures to chemical structure in high polymers. Rubber Chem Technol 36(5): 1303–1421.
- 69Akihisa I, Tao Z, Tsuyoshi M. 1989. Aluminum–lanthanum–nickel amorphous alloys with a wide supercooled liquid region. Mater Trans 30(12): 965–972.
10.2320/matertrans1989.30.965 Google Scholar
- 70Wei BC, Wang WH, Xia L, Zhang A, Zhao DQ, Pan MX. 2002. Glass transition and thermal stability of hard magnetic bulk NdAlFeCo metallic glass. Mater Sci Eng A 334(1–2): 307–311.
- 71Zallen R. 1983. The formation of amorphous solids. In The physics of amorphous solids. New York: Wiley, pp 1–22.
10.1002/3527602798 Google Scholar
- 72Ping W, Paraska D, Baker R, Harrowell PC, Angell A. 2011. Molecular engineering of the glass transition: Glass-forming ability across a homologous series of cyclic stilbenes. Mol Pharm 115(16): 4696–4702.
- 73Marsac PJ, Li T, Taylor LS. 2009. Estimation of drug–polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res 26(1): 139–151.
- 74Guo Y, Shalaev E, Smith S. 2013. Solid-state analysis and amorphous dispersions in assessing the physical stability of pharmaceutical formulations. TrAC Trend Anal Chem 49: 137–144.
- 75Paudel A, Geppi M, Van Den Mooter G. 2014. Structural and dynamic properties of amorphous solid dispersions: The role of solid-state nuclear magnetic resonance spectroscopy and relaxometry. J Pharm Sci 103(9): 2635–2662.
- 76Bhardwaj SP, Arora KK, Kwong E, Templeton A, Clas SD, Suryanarayanan R. 2014. Mechanism of amorphous itraconazole stabilization in polymer solid dispersions: Role of molecular mobility. Mol Pharm 11(11): 4228–4237.
- 77Worku ZA, Aarts J, Singh A, Van den Mooter G. 2014. Drug-polymer miscibility across a spray dryer: A case study of naproxen and miconazole solid dispersions. Mol Pharm 11(4): 1094–1101.
- 78Qian F, Huang J, Hussain MA. 2010. Drug-polymer solubility and miscibility: Stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci 99(7): 2941–2947.
- 79Flory RJ. 1953. Principles of polymer chemistry. Ithaca, New York: Cornell University Press.
- 80Marsac P, Shamblin S, Taylor L. 2006. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm Res 23(10): 2417–2426.
- 81Zhao Y, Inbar P, Chokshi HP, Malick AW, Choi DS. 2011. Prediction of the thermal phase diagram of amorphous solid dispersions by Flory-Huggins theory. J Pharm Sci 100(8): 3196–3207.
- 82Thakral S, Thakral NK. 2013. Prediction of drug-polymer miscibility through the use of solubility parameter based Flory-Huggins interaction parameter and the experimental validation: PEG as model polymer. J Pharm Sci 102(7): 2254–2263.
- 83Huang Y, Dai W. 2014. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B 4(1): 18–25.
- 84Donnelly C, Tian Y, Potter C, Jones DS, Andrews GP. 2014. Probing the effects of experimental conditions on the character of drug-polymer phase diagrams constructed using Flory-Huggins theory. Pharm Res 32(1): 167–179.
- 85Hildebrand JH, Scott RL. 1950. The solubility of non-electrolytes. 3rd ed. New York: Reinhold.
- 86Lindvig T, Michelsen ML, Kontogeorgis GM. 2002. A Flory–Huggins model based on the Hansen solubility parameters. Fluid Phase Equlibria 203: 247–260.
- 87Forster A, Hempenstall J, Tucker I, Rades T. 2001. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int J Pharm 226(1–2): 147–161.
- 88Meng F, Trivino A, Prasad D, Chauhan H. 2015. Investigation and correlation of drug polymer miscibility and molecular interactions by various approaches for the preparation of amorphous solid dispersions. Eur J Pharm Sci 71: 12–24.
- 89Vandecruys R, Peeters J, Verreck G, Brewster ME. 2007. Use of a screening method to determine excipients which optimize the extent and stability of super-saturated drug solutions and application of this system to solid formulation design. Int J Pharm 342(1–2): 168–175.
- 90Warren DB, Benameur H, Porter CJH, Pouton CW. 2010. Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: A mechanistic basis for utility. J Drug Target 18(10): 704–731.
- 91Van Eerdenbrugh B, Raina S, Hsieh YL, Augustijns P, Taylor LS. 2014. Classification of the crystallization behavior of amorphous active pharmaceutical ingredients in aqueous environments. Pharm Res 31(4): 969–982.
- 92Konno H, Taylor LS. 2008. Ability of different polymers to inhibit the crystallization of amorphous felodipine in the presence of moisture. Pharm Res 25(4): 969–978.
- 93Konno H, Handa T, Alonzo DE, Taylor LS. 2008. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur J Pharm Biopharm 70(2): 493–499.
- 94Raina SA, Alonzo DE, Zhang GG, Gao Y, Taylor LS. 2014. Impact of polymers on the crystallization and phase transition kinetics of amorphous nifedipine during dissolution in aqueous media. Mol Pharm 11(10): 3565–3576.
- 95Meng Z, Ming Z, Wei S, Bi X, Hatch GM, Gu J, Li C. 2014. Amorphous solid dispersion of berberine with absorption enhancer demonstrates a remarkable hypoglycemic effect via improving its bioavailability. Int J Pharm 467(1–2): 50–59.
- 96Lee T, Lee J. 2003. Drug-carrier screening on a chip. Pharm Technol 1: 40–48.
- 97Barillaro V, PaPescarmona PP, Van Speybroeck M, Do Thi T, Van Humbeeck J, Vermant J, Augustijns P, Martens JA, Van Den Mooter G. 2008. High-throughput study of phenytoin solid dispersions: Formulation using an automated solvent casting method, dissolution testing, and scaling-up. J Comb Chem 10: 637–643.
- 98Mansky P, Dai W, Li S, Pollock-Dove C, Daehne K, Dong L, Eichenbaum G. 2007. Screening method to identify preclinical liquid and semi-solid formulations for low solubility compounds: Miniaturization and automation of solvent casting and dissolution testing. J Pharm Sci 96(6): 1548–1563.
- 99Shanbhag A, Rabel S, Nauka E, Casadevall G, Shivanand P, Eichenbaum G, Mansky P. 2008. Method for screening of solid dispersion formulations of low-solubility compounds—Miniaturization and automation of solvent casting and dissolution testing. Int J Pharm 351(1–2): 209–218.
- 100Wenglowsky S, Ren L, Ahrendt KA, Laird ER, Aliagas I, Alicke B, Buckmelter AJ, Choo EF, Dinkel V, Feng B, Gloor SL, Gould SE, Gross S, Gunzner-Toste J, Hansen JD, Lord-Ondash HA, Malesky K, Mathieu S, Newhouse B, Raddatz NJ, Ran Y, Rana S, Randolph N, Risom T, Rudolph J, Savage S, Selby LT, Shrag M, Voegtli WC, Wen Z, Willis BS, Woessner RD, Wu WI, Young WB, Grina J. 2011. A selective orally bioavailability and efficacious pyrazolopyridine inhibitor of V600EB-Raf. ACS Med Chem Lett 2(5): 342–347.
- 101Hu Q, Choi DS, Chokshi H, Shah N, Sandhu H. 2013. Highly efficient miniaturized coprecipitation screening (MiCoS) for amorphous solid dispersion formulation development. Int J Pharm 450(1–2): 53–62.
- 102Adhikari B, Howes T, Bhandari BR, Truong V. 2000. Experimental studies and kinetics of single drop drying and their relevance in drying of sugar-rich foods: A review. Int J Food Prop 3(3): 323–351.
- 103Benmore CJ, Weber JK, Tailor AN, Cherry BR, Yarger JL, Mou Q, Weber W, Neuefeind J, Byrn SR. 2013. Structural characterization and aging of glassy pharmaceuticals made using acoustic levitation. J Pharm Sci 102(4): 1290–1300.
- 104Benmore CJ, Weber JKR. 2011. Amorphization of molecular liquids of pharmaceutical drugs by acoustic levitation. Phys Rev X 1(1): 1–7.
- 105Whiteside PT, Zhang J, Parker AP, Madden-Smith CE, Patel N, Jensen J, Sloth J, Roberts CJ. 2013. Physical and chemical comparison of material from a conventional spray-dried system and a single particle spray-dried system. Int J Pharm 455(1–2): 306–311.
- 106Jang DJ, Sim T, Oh E. 2013. Formulation and optimization of spray dried amlodipine solid dispersion for enhanced absorption. Drug Dev Ind Pharm 39(7): 1133–1141.
- 107Arpagaus C. 2011. Nano spray dryer B-90: Literature review and applications. Accessed, at: http://www.scribd.com/doc/201979491/Nano-Spray-Dryer-B-90-Literature-Review-and-Applications on January 10, 2015.
- 108Schmid K, Arpagaus C, Friess W. 2009. Evaluation of a vibrating mesh spray dryer for preparation of submicron particles. RDD Europe 2: 323–326.
- 109Schmid K, Arpagaus C, Friess W. 2011. Evaluation of the nano spray dryer B-90 for pharmaceutical applications. Pharm Dev Technol 16(4): 287–294.
- 110Li X, Anton N, Arpagaus C, Belleteix F, Vandamme TF. 2010. Nanoparticles by spray drying using innovative new technology: The BUCHI Nano Spray Dryer B-90. J Control Release 147(2): 304–310.
- 111Van den Mooter G. 2012. The use of amorphous solid dispersions: A formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today Technol 9(2): e79–e85.
- 112Qian F, Wang J, Hartley R, Tao J, Haddadin R, Mathias N, Hussain M. 2012. Solution behavior of PVP-VA and HPMC-AS-based amorphous solid dispersions and their bioavailability implications. Pharm Res 29(10): 2765–2776.
- 113Alonzo DE, Gao Y, Zhou D, Mo H, Zhang GG, Taylor LS. 2011. Dissolution and precipitation behavior of amorphous solid dispersions. J Pharm Sci 100(8): 3316–3331.
- 114Augustijins P, Brewster ME. 2012. Supersaturating drug delivery systems: Fast is not necessarily good enough. J Pharm Sci 101(1): 7–9.
- 115Kararli TT. 1995. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 16(5): 351–380.
- 116Lust A, Laidmäe I, Palo M, Meos A, Aaltonen J, Veski P, Heinämäki J, Kogermann K. 2013. Solid-state dependent dissolution and oral bioavailability of piroxicam in rats. Eur J Pharm Sci 48(1–2): 47–54.
- 117Chuah AM, Jacob B, Jie Z, Ramesh S, Mandal S, Puthan JK, Deshpande P, Vaidyanathan VV, Gelling, RW, Patel G, Das T, Shreeram S. 2014. Enhanced bioavailability and bioefficacy of an amorphous solid dispersion of curcumin. Food Chem 156: 227–233.
- 118Forster R, Bode G, Ellegaard L, van der Laan JW. 2010. The RETHINK project on minipigs in the toxicity testing of new medicines and chemicals: Conclusions and recommendations. J Pharmacol Toxicol Methods 62: 236–242.
- 119Six K, Daems T, de Hoon J, Van Hecken A, Depre M, Bouche MP, Prinsen P, Verreck G, Peeters J, Brewster ME, Van den Mooter G. 2005. Clinical study of solid dispersions of itraconazole prepared by hot-stage extrusion. Eur J Pharm Sci 24(2–3): 179–186.
- 120Mahmah O, Tabbakh R, Kelly A, Paradkar A. 2014. A comparative study of the effect of spray drying and hot-melt extrusion on the properties of amorphous solid dispersions containing felodipine. J Pharm Pharmacol 66(2): 275–284.
- 121Chiang PC, Cui Y, Ran Y, Lubach J, Chou KJ, Bao L, Jia W, La H, Hau J, Sambrone A, Qin A, Deng Y, Wong H. 2013. In vitro and in vivo evaluation of amorphous solid dispersions generated by different bench-scale processes, using griseofulvin as a model compound. AAPS J 15(2): 608–617.
- 122Miller DA, DiNunzio JC, Yang W, McGinity JW, Williams III RO. 2008. Enhanced in vivo absorption of itraconazole via stabili-zation of supersaturation following acidic-to-neutral pH transition. Drug Dev Ind Pharm 34(8): 890–902.
- 123DiNunzio JC, Miller DA, Yang W, McGinity JW, Williams RO III. 2008. Amorphous compositions using concentration enhancing polymers for improved bioavailability of itraconazole. Mol Pharm 5(6): 968–980.
- 124Shah N, Iyer RM, Mair HJ, Choi DS, Tian H, Diodone R, Fähnrich K, Pabst-Ravot A, Tang K, Scheubel E, Grippo JF, Moreira SA, Go Z, Mouskountakis J, Louie T, Ibrahim PN, Sandhu H, Rubia L, Chokshi H, Singhal D, Malick W. 2013. Improved human bioavailability of vemurafenib, a practically insoluble drug, using an amorphous polymer-stabilized solid dispersion prepared by a solvent-controlled coprecipitation process. J Pharm Sci 102(3): 967–981.
- 125Ta J, Sun Y, Zhang GGZ, Yu L. 2009. Solubility of small molecule crystals in polymers: D-mannitol in PVP, in-domethacin in PVP/VA, and nifedipine in PVP/VA. Pharm Res 26(4): 855–864.
- 126Paudel A, Van Humbeeck J, Van Den Mooter G. 2010. Theoretical and experimental investigation on the solid solubility and miscibility of naproxen in poly(vinylpyrrolidone). Mol Pharm 7(4): 1133–1148.
- 127Qian F, Huang J, Zhu Q, Haddadin R, Gawel J, Garmise R, Hussain M. 2010. Is a distinctive single Tg a reliable indicator for the homogeneity of amorphous solid dispersion? Int J Pharm 395(1–2): 232–235.
- 128Alonzo DE, Zhang GZ, Zhou D, Gao Y, Taylor LS. 2009. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res 27(4): 608–618.
- 129Hugo M, Kunath K, Dressman J. 2013. Selection of excipient, solvent and packaging to optimize the performance of spray-dried formulations: Case example fenofibrate. Drug Dev Ind Pharm 39(2): 402–412.
- 130Harman A. 2010. A roller coaster chase for a cure. The New York Times. Accessed, at: http://www.pharmacircle.com on May 10, 2015.
- 131 Zelboraf® (vemurafenib) tablet package insert. Accessed, at: http://www.gene.com/download/pdf/zelboraf_prescribing.pdf on May 10, 2015.
- 132Miller DA, Brough CE, Keen JM. 2014. Improved formulations of vemurafenib and methods of making the same. Patent US. Provisional patent application no. 62/074,465.
- 133Song TT, Yuan XB, Sun AP, Wang H, Kang CS, Ren Y, He B, Sheng J, Pu PY. 2009. Preparation of injectable paclitaxel sustained release microspheres by spray drying for inhibition of glioma in vitro. J Appl Polym Sci 115(3): 1534–1539.
- 134Meeus J, Chen X, Scurr DJ, Ciarnelli V, Amssoms K, Roberts CJ, Davies MC, van Den Mooter G. 2012. Nanoscale surface characterization and miscibility study of a spray-dried injectable polymeric matrix consisting of poly(lactic-co-glycolic acid) and polyvinylpyrrolidone. J Pharm Sci 101(9): 3473–3485.
- 135Shiny J, Ramchander T, Goverdhan P, Habibuddin M, Aukunuru JV. 2013. Development and evaluation of a novel biodegradable sustained release microsphere formulation of paclitaxel intended to treat breast cancer. Int J Pharm Investig 3(3): 119–125.
- 136 Abraxane® for injectable suspension package insert. Accessed, at: http://www.abraxane.com/wp-content/pi/prescribing-info.html on May 10, 2015.
- 137Desai NP, Soon-Shiong P. 2000. Paclitaxel-containing formulations. Patent US6753006 B1.
- 138 PharmaCircle™ database. Accessed, at: http://www.pharmacircle.com on May 10, 2015.
- 139Chen Y, Liu C, Chen Z, Su C, Mageman M, Hussain M, Haskell R, Stefanski K, Qian F. 2015. Drug-polymer-water interaction and its implication for the dissolution performance of amorphous solid dispersions. Mol Pharm 12(2): 576–589.
- 140Yalkowsky SH. 1999. Solubility and solubilization in aqueous media. New York, NY: Oxford University Press, Inc.
- 141Yalkowsky SH, He Y, Jain P. 2009. Handbook of aqueous solubility data. 2nd ed. Boca Raton, FL: CRC Press.
- 142Kennedy M, Hu J, Gao P, Li L, Ali-Reynolds A, Chal B, Gupta V, Ma C, Mahajan N, Akrami A, Surapaneni S. 2008. Enhanced bioavailability of a poorly soluble VR1 antagonist using an amorphous solid dispersion approach: A case study. Mol Pharm 5(6): 981–993.
- 143Ikegami K, Tagawa K, Narisawa S, Osawa T. 2003. Suitability of the cynomolgus monkey as an animal model for drug absorption studies of oral dosage forms from the viewpoint of gastrointestinal physiology. Biol Pharm Bull 26(10): 1442–1447.
- 144Willmann S, Edginton AN, Dressman JB. 2007. Development and validation of a physiology-based model for the prediction of oral absorption in monkeys. Pharm Res 24(7): 1275–1282.
- 145Miller DA, DiNunzio JC, Yang W, McGinity JW, Williams III RO. 2008. Targeted intestinal delivery of supersaturated itraconazole for improved oral absorption. Pharm Res 25(6): 1450–1459.