Sucrose phosphate synthase plays a key role in boron-promoted sucrose synthesis in tobacco leaves
Yong-Chun Shi
Life Science College, Henan Agricultural University, Zhengzhou 450002, China
Search for more papers by this authorBo Sun
Life Science College, Henan Agricultural University, Zhengzhou 450002, China
Search for more papers by this authorCorresponding Author
Wei-Qun Liu
Life Science College, Henan Agricultural University, Zhengzhou 450002, China
Life Science College, Henan Agricultural University, Zhengzhou 450002, ChinaSearch for more papers by this authorYong-Chun Shi
Life Science College, Henan Agricultural University, Zhengzhou 450002, China
Search for more papers by this authorBo Sun
Life Science College, Henan Agricultural University, Zhengzhou 450002, China
Search for more papers by this authorCorresponding Author
Wei-Qun Liu
Life Science College, Henan Agricultural University, Zhengzhou 450002, China
Life Science College, Henan Agricultural University, Zhengzhou 450002, ChinaSearch for more papers by this authorAbstract
Boron (B) is essential for plant growth. The mechanism of B interacting with sucrose transport is not fully understood. In detached tobacco leaves treated with increasing B concentrations, the concentrations of sucrose, glucose, fructose, and starch as well as the activities of sucrose phosphate synthetase (SPS), sucrose synthetase (SS), and α-amylase were quantified. In addition, the expression levels of sucrose transporters (SUT1 and SUT4) were determined. The data presented here suggest that B promotes the sucrose concentration and transport via elevation of SPS activity, decrease of SS activity, and increase of SUT4 expression level.
References
- Anderson, R. A., Reddy, J. M., Oswald, C., Zaneveld, J. D. (1979): Enzymic determination of fructose in seminal plasma by initial rate analysis. Clin. Chem. 10, 1780–1782.
- Bassil, E., Hu, H., Brown, P. H. (2004): Use of phenylboronic acids to investigate boron function in plants: Possible role of boron in transvacuolar cytoplasmic strands and cell-to-cell adhesion. Plant Physiol. 136, 3383–3395.
- Baud, S., Vaultier, M., Rochat, C. (2004): Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J. Exp. Bot. 55, 397–409.
- Baxter, C. J., Foyer, C. H., Turner, J., Rolfe, S. A., Quick, W. P. (2003): Elevated sucrose-phosphate synthase activity in transgenic tobacco sustains photosynthesis in older leaves and alters development. J. Exp. Bot. 54, 1813–1820.
- Bernfeld, P. (1955): Amylases, α and β. Meth. Enzymol. 1, 149–158.
- Boorer, K. J., Loo, D. D. F., Frommer, W. B., Wright, E. M. (1996): Transport mechanism of the cloned potato H1/sucrose transporter StSUT1. J. Biol. Chem. 271, 25139–25144.
- Camacho-Cristóbal, J. J., González-Fontes, A. (1999): Boron deficiency causes a drastic decrease in nitrate content and nitrate reductase activity, and increases the content of carbohydrates in leaves from tobacco plants. Planta 209, 528–536.
- Camacho-Cristóbal, J. J., Rexach, J., Herrera-Rodríguez, M. B., Navarro-Gochicoa, M. T., González-Fontes, A. (2011): Boron deficiency and transcript level changes. Plant Sci. 181, 85–89.
- Cervilla, L. M., Blasco, B., Rios, J. J., Rosales, M. A., Rubio-Wilhelmi, M. M., Sanchez-Rodriguez, E., Romero, L., Ruiz, J. M. (2009): Response of nitrogen metabolism to boron toxicity in tomato plants. Plant Biol. 11, 671–677.
- Cournac, L., Dimon, B., Carrier, P., Lohou, A., Chagvardieff, P. (1991): Growth and photosynthetic characteristics of Solanum tuberosum plantlets cultivated in vitro in different conditions of aeration, sucrose supply, and CO2 enrichment. Plant Physiol. 97, 112–117.
- Doehlert, D. C., Duke, S. H. (1983): Specific determination of amylase activity in crude plant extracts containing fl-amylase. Plant Physiol. 71, 229–234.
- Dugger, W. M., Humphreys, T. E. (1960): Influence of boron on enzymatic reactions associated with biosynthesis of sucrose. Plant Physiol. 35, 523–530.
- Echt, C. S., Chourey, P. S. (1985): A comparison of two sucrose synthetase isoenzymes from normal and shrunken-1 maize. Plant Physiol. 79, 530–536.
- El-Shintinawy, F. (1999): Structural and functional damage caused by boron deficiency in sunflower leaves. Photosynthetica 36, 565–573.
- Gauch, H. G., Dugger, W. M. (1953): The role of boron in the translocation of sucrose. Plant Physiol. 28, 457–466.
- Hajiboland, R., Farhanghi, F. (2010): Remobilization of boron, photosynthesis, phenolic metabolism and anti-oxidant defense capacity in boron-dficicent turnip (Brassica rapa L.) plants. Soil Sci. Plant Nutr. 56, 427–437.
- Hajiboland, R., Bastani, S., Rad, S. B. (2011): Effect of light intensity on photosynthesis and antioxidant defense in boron deficient tea plants. Acta Biol. Szeged 55, 265–272.
- Han, S., Chen, L. S., Jiang, H. X., Smith, B. R., Yang, L. T., Xie, C. Y. (2008): Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. J. Plant Physiol. 165, 1331–1341.
- Harms, K., Wöhner, R. V., Schulz, B., Frommer, W. B. (1994): Expression of plasma membrane H1-ATPase genes in potato. Plant Mol. Biol. 26, 979–988.
- Heidarabadi, M. D., Ghanati, F., Fujiwara, T. (2011): Interaction between boron and aluminum and their effects on phenolic metabolism of Linum usitatissimum L. roots. Plant Physiol. Biochem. 49, 1377–1383.
- Kobayashi, M., Matoh, T., Azuma, J. (1996): Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiol. 110, 1017–1020.
- Krishnaveni, S., Balasubramanian, T., Sadasivam, S. (1984): Sugar distribution in sweet stalk sorghum. Food Chem. 15, 229–232.
- Krügel, U., Veenhoff, L. M., Langbein, J., Wiederhold, E., Liesche, J., Friedrich, T., Grimm, B., Martinoia, E., Poolman, B., Kühn, C. (2008): Transport and sorting of the Solanum tuberosum sucrose transporter SUT1 is affected by posttranslational modification. Plant Cell 20, 1–17.
- Lemoine, R., Bfirkle, L., Barker, L., Sakr, S., Ktihn, C., Regnacq, M., Gaillard, C., Delrot, S., Frommer, W. B. (1999): Identification of a pollen-specific sucrose transporter-like protein NtSUT3 from tobacco. FEBS Lett. 454, 325–330.
- Li, Y., Li, L., Fan, R., Peng, C., Sun, H., Zhu, S., Wang, X., Zhang, L., Zhang, D. (2012): Arabidopsis sucrose transporter SUT4 interacts with cytochrome b5-2 to regulate seed germination in response to sucrose and glucose. Mol. Plant DOI: 10.1093/mp/sss001.
- Liakopoulos, G., Stavrianakou, S., Filippou, M., Fasseas, C., Tsadilas, C., Drossopoulos, I., Karabourniotis G. (2005): Boron remobilization at low boron supply in olive (Olea europaea) in relation to leaf and phloem mannitol concentrations. Tree Physiol. 25, 157–165.
- Liesche, J., He, H. X., Grimm, B., Schulz, A., Kühn, C. (2010): Recycling of solanum sucrose transporters expressed in yeast, tobacco, and in mature phloem sieve elements. Mol. Plant 3, 1064–1074.
- Mishra, S., Heckathorn, S., Frantz, J., Yu, F., Gray, J. (2009): Effects of boron deficiency on geranium grown under different nonphotoinhibitory light levels. J. Am. Soc. Hort. Sci. 134, 183–193.
- O'Neill, M. A., Eberhard, S., Albersheim, P., Darvill, A. G. (2001): Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science 294, 846–849.
- Ruuhola, T., Keinänen, M., Keski-Saari, S., Lehto, T. (2011): Boron nutrition affects the carbon metabolism of silver birch seedlings. Tree Physiol. 31, 1251–1261.
- Stangoulis, J., Tate, M., Graham, R., Bucknall, M., Palmer, L., Boughton, B., Reid, R. (2010): The mechanism of boron mobility in wheat and canola phloem. Plant Physiol. 153, 876–881.
- Takano, J., Miwa, K., Yuan, L., Wirén, N., Fujiwara, T. (2005): Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. PNAS 102, 12276–12281.
- Weise, A., Barker, L., Kühn, C., Lalonde, S., Buschmann, H., Frommer, W. B., Ward, J. M. (2000): A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants. Plant Cell 12, 1345–1355.
- Wimmer, M. A., Lochnit, G., Bassil, E., Mühling, K. H., Goldbach, H. E. (2009): Membrane-associated, boron-interacting proteins isolated by boronate affinity chromatography. Plant Cell Physiol. 50, 1292–1304.