Applicability of the soil gradient method for estimating soil–atmosphere CO2, CH4, and N2O fluxes for steppe soils in Inner Mongolia
Benjamin Wolf
Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
Search for more papers by this authorWeiwei Chen
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute for Atmospheric Physics, Chinese Academy of Sciences (IAP-CAS), 100029 Beijing, China
Search for more papers by this authorNicolas Brüggemann
Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
Search for more papers by this authorXunhua Zheng
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute for Atmospheric Physics, Chinese Academy of Sciences (IAP-CAS), 100029 Beijing, China
Search for more papers by this authorJukka Pumpanen
Department of Forest Ecology, P.O. Box 27, FI-00014 University of Helsinki, Finland
Search for more papers by this authorCorresponding Author
Klaus Butterbach-Bahl
Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, GermanySearch for more papers by this authorBenjamin Wolf
Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
Search for more papers by this authorWeiwei Chen
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute for Atmospheric Physics, Chinese Academy of Sciences (IAP-CAS), 100029 Beijing, China
Search for more papers by this authorNicolas Brüggemann
Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
Search for more papers by this authorXunhua Zheng
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute for Atmospheric Physics, Chinese Academy of Sciences (IAP-CAS), 100029 Beijing, China
Search for more papers by this authorJukka Pumpanen
Department of Forest Ecology, P.O. Box 27, FI-00014 University of Helsinki, Finland
Search for more papers by this authorCorresponding Author
Klaus Butterbach-Bahl
Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, GermanySearch for more papers by this authorAbstract
For evaluating the applicability of the soil gradient method as a substitute for CO2-, CH4-, and N2O-flux measurements in steppe, we carried out chamber measurements and determined soil gas concentration at an ungrazed (UG99) and a grazed (WG) site in Inner Mongolia, China. The agreement of the concentration-based flux estimates with measured chamber-based fluxes varied largely depending on the respective GHG in the sequence CO2 > CH4 >> N2O. A calibration of the gas-transport parameter used to calculate fluxes based on soil gas concentrations improved the results considerably for CO2 and CH4. After calibration, the average deviation from the chamber-based annual cumulative flux for both sites was 11.5%, 10.5%, and 59% for CO2, CH4, and N2O. The gradient method did not constitute an adequate stand-alone substitute for greenhouse-gas flux estimation since a calibration using chamber-based measurements was necessary and vigorous production processes were confined to the uppermost, almost water-saturated soil layer.
References
- Baver, L. D., Gardner, W. H., Gardner, W. R. (1972): Soil Physics. John Wiley and Sons, New York, Londo, Sydney, Toronto.
- Billings, S. A., Richter, D. D., Yarie, J. (2000): Sensitivity of soil methane fluxes to reduced precipitation in boreal forest soils. Soil Biol. Biochem. 32, 1431–1441.
- Billings, S. A., Schaeffer, S. M., Evans, R. D. (2002): Trace N gas losses and N mineralization in Mojave desert soils exposed to elevated CO2. Soil Biol. Biochem. 34, 1777–1784.
- Bradford, M. A., Ineson, P., Wookey, P. A., Lappin-Scott, H. M. (2001): Role of CH4 oxidation, production and transport in forest soil CH4 flux. Soil Biol. Biochem. 33, 1625–1631.
- Butterbach-Bahl, K., Papen, H. (2002): Four years continuous record of CH4-exchange between the atmosphere and untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany. Plant Soil 240, 77–90.
- Butterbach-Bahl, K., Gasche, R., Breuer, L., Papen, H. (1997): Fluxes of NO and N2O from temperate forest soils: impact of forest type, N deposition and of liming on the NO and N2O emissions. Nutr. Cycl. Agroecosys. 48, 79–90.
- Chapuis-Lardy, L., Wrage, N., Metay, A., Chotte, J. L., Bernoux, M. (2007): Soils, a sink for N2O? A review. Glob. Change Biol. 13, 1–17.
- Currie, J. A. (1960): Gaseous Diffusion in Porous Media .1. A Non-Steady State Method. British J. Appl. Phys. 11, 314–317.
- Davidson, E. A., Savage, K., Verchot, L. V., Navarro, R. (2002): Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agr. Forest. Meteorol. 113, 21–37.
- Del Grosso, S. J., Parton, W. J., Mosier, A. R., Ojima, D. S., Potter, C. S., Borken, W., Brumme, R., Butterbach-Bahl, K., Crill, P. M., Dobbie, K., Smith, K. A. (2000): General CH4 oxidation model and comparison of CH4 oxidation in natural and managed systems. Global Biogeochem. Cycl. 14, 999–1020.
- Denmead, O. T. (2008): Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere. Plant Soil 309, 5–24.
- Dunfield, P. F., Topp, E., Archambault, C., Knowles, R. (1995): Effect of nitrogen fertilizers and moisture-content on CH4 and N2O fluxes in a Humisol – Measurements in the field and intact soil cores. Biogeochemistry 29, 199–222.
- Fierer, N., Chadwick, O. A., Trumbore, S. E. (2005): Production of CO2 in soil profiles of a California annual grassland. Ecosystems 8, 412–429.
- Flechard, C. R., Neftel, A., Jocher, M., Ammann, C., Fuhrer, J. (2005): Bi-directional soil/atmosphere N2O exchange over two mown grassland systems with contrasting management practices. Glob. Change Biol. 11, 2114–2127.
- Flechard, C. R., Neftel, A., Jocher, M., Ammann, C., Leifeld, J., Fuhrer, J. (2007): Temporal changes in soil pore space CO2 concentration and storage under permanent grassland. Agr. Forest. Meteorol. 142, 66–84.
- Flessa, H., Dorsch, P., Beese, F. (1995): Seasonal varitation of N2O and CH4 fluxes in differently managed arable soils in southern Germany. J. Geophys. Res. (Atmos.) 100, 23115–23124.
- Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., Van Dorland, R. (2007): Changes in Atmospheric Constituents and Radiative Forcing, in Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L. (eds.): Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA.
- Freijer, J. I., Leffelaar, P. A. (1996): Adapted Fick's law applied to soil respiration. Water Resour. Res. 32, 791–800.
- Gao, Y. Z., Giese, M., Lin, S., Sattelmacher, B., Zhao, Y., Brueck, H. (2008): Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant Soil 307, 41–50.
- Glinski, J., Stepniewski, W. (1983): Soil Aeration and its Role for Plants. CRC Press, Boca Raton, FL.
- Goldberg, S. D., Gebauer, G. (2009): Drought turns a Central European Norway spruce forest soil from an N2O source to a transient N2O sink. Glob. Change Biol. 15, 850–860.
- Gut, A., Blatter, A., Fahrni, M., Lehmann, B. E., Neftel, A., Staffelbach, T. (1998): A new membrane tube technique (METT) for continuous gas measurements in soils. Plant Soil 198, 79–88.
- Hartley, I. P., Heinemeyer, A., Ineson, P. (2007): Effects of three years of soil warming and shading on the rate of soil respiration: substrate availability and not thermal acclimation mediates observed response. Glob. Change Biol. 13, 1761–1770.
- Hashimoto, S., Suzuki, M. (2002): Vertical distributions of carbon dioxide diffusion coefficients and production rates in forest soils. Soil Sci. Soc. Am. J. 66, 1151–1158.
- Hoffmann, C., Funk, R., Wieland, R., Li, Y., Sommer, M. (2008): Effects of grazing and topography on dust flux and deposition in the Xilingele grassland, Inner Mongolia. J. Arid Environ. 72, 792–807.
- Holst, J., Liu, C. Y., Bruggemann, N., Butterbach-Bahl, K., Zheng, X. H., Wang, Y. S., Han, S. H., Yao, Z. S., Yue, J., Han, X. G. (2007): Microbial N turnover and N-oxide (N2O/NO/NO2) fluxes in semi-arid grassland of Inner Mongolia. Ecosystems 10, 623–634.
- Hosen, Y., Tsuruta, H., Minami, K. (2000): Effects of the depth of NO and N2O productions in soil on their emission rates to the atmosphere: analysis by a simulation model. Nutr. Cycl. Agroecosys. 57, 83–98.
- Hutchinson, G. L., Livingston, G. P. (1993): Use of Chamber Systems to Measure Trace Gas Fluxes. Agricultural Ecosystem Effects on Trace Gases and Global Climate Change. ASA Special Publication 55, American Society of Agronomy, Madison, WI, USA, pp. 63–78.
- Jacinthe, P. A., Lal, R. (2006): Methane oxidation potential of reclaimed grassland soils as affected by management. Soil Sci. 171, 772–783.
- Keller, M., Weitz, A. M., Bryan, B., Rivera, M. M., Silver, W. L. (2000): Soil-atmosphere nitrogen oxide fluxes: Effects of root disturbance. J. Geophys. Res. (Atmos.) 105, 17693–17698.
- Kellman, L., Kavanaugh, K. (2008): Nitrous oxide dynamics in managed northern forest soil profiles: is production offset by consumption? Biogeochemistry 90, 115–128.
- Kiese, R., Butterbach-Bahl, K. (2002): N2O and CO2 emissions from three different tropical forest sites in the wet tropics of Queensland, Australia. Soil Biol. Biochem. 34, 975–987.
- Kim, Y., Ueyama, M., Nakagawa, F., Tsunogai, U., Harazono, Y., Tanaka, N. (2007): Assessment of winter fluxes of CO2 and CH4 in boreal forest soils of central Alaska estimated by the profile method and the chamber method: a diagnosis of methane emission and implications for the regional carbon budget. Tellus B 59, 223–233.
- Kusa, K., Sawamoto, T., Hu, R., Hatano, R. (2008): Comparison of the closed-chamber and gas concentration gradient methods for measurement of CO2 and N2O fluxes in two upland field soils. Soil Sci. Plant Nutr. 54, 777–785.
- Lerman, A. (1979): Geochemical Processes: Water and Sediment Environments. Wiley, New York. p. 481.
- Liang, E. Y., Vennetier, M., Lin, J. X., Shao, X. M. (2003): Relationships between tree increment, climate and above-ground biomass of grass: a case study in the typical steppe, north China. Acta Oecol. 24, 87–94.
- Liu, C. Y., Holst, J., Bruggemann, N., Butterbach-Bahl, K., Yao, Z. S., Yue, J., Han, S. H., Han, X., Krummelbein, J., Horn, R., Zheng, X. H. (2007): Winter-grazing reduces methane uptake by soils of a typical semi-arid steppe in Inner Mongolia, China. Atmos. Environ. 41, 5948–5958.
- Mast, M. A., Wickland, K. P., Striegl, R. T., Clow, D. W. (1998): Winter fluxes of CO2 and CH4 from subalpine soils in Rocky Mountain National Park, Colorado. Global Biogeochem. Cy. 12, 607–620.
- Pihlatie, M., Pumpanen, J., Rinne, J., Ilvesniemi, H., Simojoki, A., Hari, P., Vesala, T. (2007): Gas concentration driven fluxes of nitrous oxide and carbon dioxide in boreal forest soil. Tellus B 59, 458–469.
- Pritchard, D. T., Currie, J. A. (1982): Diffusion of coefficients of carbon-dioxide, nitrous-oxide, ethylene and ethane in air and their measurement. J. Soil Sci. 33, 175–184.
- Pumpanen, J., Ilvesniemi, H., Hari, P. (2003): A process-based model for predicting soil carbon dioxide efflux and concentration. Soil Sci. Soc. Am. J. 67, 402–413.
- Pumpanen, J., Ilvesniemi, H., Kuhnala, L., Siivola, E., Laakso, H., Kolari, P., Helenelund, C., Laakso, M., Uusimaa, M., Hari, P. (2008): Respiration in boreal forest soil as determined from carbon dioxide concentration profile. Soil Sci. Soc. Am. J. 72, 1187–1196.
- Ramankutty, N., Evan, A. T., Monfreda, C., Foley, J. A. (2008): Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22, GB1003, DOI: 10.1029/2007GB002952.
- Rosenkranz, P., Bruggemann, N., Papen, H., Xu, Z., Horvath, L., Butterbach-Bahl, K. (2006): Soil N and C trace gas fluxes and microbial soil N turnover in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary. Plant Soil 286, 301–322.
- Sommerfeld, R. A., Mosier, A. R., Musselmann, R. C. (1993): CO2, CH4 and N2O flux through a Wyoming snowpack and implications for global budgets. Nature 361, 140–142.
- Steffens, M., Kolbl, A., Totsche, K. U., Kogel-Knabner, I. (2008): Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China). Geoderma 143, 63–72.
- Striegl, R. G., Mcconnaughey, T. A., Thorstenson, D. C., Weeks, E. P., Woodward, J. C. (1992): Consumption of atmospheric methane by desert soils. Nature 357, 145–147.
-
Taylor, S. A.
(1949):
Oxygen diffusion in porous media as a measure of soil aeration.
Soil Sci. Soc. Am. J.
14,
55–61.
10.2136/sssaj1950.036159950014000C0013x Google Scholar
- Troeh, F. R., Jabro, J. D., Kirkham, D. (1982): Gaseous-diffusion equations for porous materials. Geoderma 27, 239–253.
- Wang, Y. S., Wang, Y. H. (2003): Quick measurement of CH4, CO2 and N2O emissions from a short-plant ecosystem. Adv. Atmos. Sci. 20, 842–844.
- Whalen, S. C., Reeburgh, W. S., Barber, V. A. (1992): Oxidation of methane in boreal forest soils–A comparison of 7 measures. Biogeochemistry 16, 181–211.
- Wolf, B., Zheng, X. H., Brueggemann, N., Chen, W. W., Dannenmann, M., Han, X. G., Sutton, M. A., Wu, H. H., Yao, Z. S., Butterbach-Bahl, K. (2010): Grazing-induced reduction of natural nitrous oxide release from continental steppe. Nature 464, 881–884.
- Wood, W. W., Petraitis, M. J. (1984): Origin and distribution of carbon-dioxide in the unsaturated zone of the Southern High-Plains of Texas. Water Resour. Res. 20, 1193–1208.
- Wu, X., Yao, Z., Bruggemann, N., Shen, Z. Y., Wolf, B., Dannenmann, M., Zheng, X., Butterbach-Bahl, K. (2010): Effects of soil moisture and temperature on CO2 and CH4 soil atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia, China. Soil Biol. Biochem. 42, 773–787.
- Xu, Y. Q., Wan, S. Q., Cheng, W. X., Li, L. H. (2008): Impacts of grazing intensity on denitrification and N2O production in a semi-arid grassland ecosystem. Biogeochemistry 88, 103–115.
- Yavitt, J. B., Downey, D. M., Lang, G. E., Sexstone, A. J. (1990): Methane consumption in two temperate forest soils. Biogeochemistry 9, 39–52.
- Yavitt, J. B., Fahey, T. J., Simmons, J. A. (1995): Methane and carbon-dioxide dynamics in a northern hardwood ecosystem. Soil Sci. Soc. Am. J. 59, 796–804.