Rapid identification and differentiation of yeasts by DNA and PCR fingerprinting
Corresponding Author
Elke Lieckfeldt
Institut für Genetik, Fachbereich Biologie, Humboldt-Universität Berlin, Invalidenstr. 43, 10115 Berlin, Germany
Institut für Genetik, Fachbereich Biologie. Humboldt Universität Berlin, Invalidenstr. 43, 10115 Berlin, GermanySearch for more papers by this authorWieland Meyer
Department of Microbiology. Duke University Medical Center, Box 3803, Durham, NC 27710, USA
Search for more papers by this authorThomas Börner
Institut für Genetik, Fachbereich Biologie, Humboldt-Universität Berlin, Invalidenstr. 43, 10115 Berlin, Germany
Search for more papers by this authorCorresponding Author
Elke Lieckfeldt
Institut für Genetik, Fachbereich Biologie, Humboldt-Universität Berlin, Invalidenstr. 43, 10115 Berlin, Germany
Institut für Genetik, Fachbereich Biologie. Humboldt Universität Berlin, Invalidenstr. 43, 10115 Berlin, GermanySearch for more papers by this authorWieland Meyer
Department of Microbiology. Duke University Medical Center, Box 3803, Durham, NC 27710, USA
Search for more papers by this authorThomas Börner
Institut für Genetik, Fachbereich Biologie, Humboldt-Universität Berlin, Invalidenstr. 43, 10115 Berlin, Germany
Search for more papers by this authorAbstract
We have used the techniques of DNA fingerprinting and polymerase chain reaction (PCR) with probes specific for hypervariable repetitive DNA sequences (mini- and microsatellite DNAs) to analyze 36 yeast strains belonging to 10 species and 2 genera. Using (GTG)5, (GACA)4, phage M13 DNA and the M13 sequence GAGGGTGGCGGTTCT as probes and primers, respectively, we obtained DNA polymorphisms which allowed us to discriminate 23 biotechnologically important strains of the yeast Saccaromyces cerevisiae and to distinguish them from strains of S. pastorianus, S. bayanus and S. willianus.
Our results demonstrate that both DNA and PCR fingerprinting are suitable tools for an easy, fast and reliable molecular typing of yeasts. The DNA fingerprinting method seems to be more sensitive than PCR fingerprinting with respect to the individualization of strains. Nevertheless, using the PCR fingerprinting technique we were able to unambigously dicriminate between yeast genotypes of different species. Therefore, PCR fingerprinting might become a useful tool in the classification of yeasts on the basis of phylogenetic relatedness.
References
- Adams, J., Puskas-Rosza, S., Simlar, J. and Wilke, C. M., 1992. Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae. Curr. Genet., 22, 13–19.
- Barnett, J. A., Payne, R. W. and Yarrow, D., 1983. Yeasts: Characteristics and Identification, First Edition. Cambridge University Press, USA.
- Barnett, J. A., Payne, R. W. and Yarrow, D., 1990. Yeasts: Characteristics and Identification, Second Edition. Cambridge University Press, USA.
- Barnett, J. A., 1992. The taxonomy of the genus Saccharomyces Myen ex Reess: a short review for non-taxonomists. Yeast, 8, 1–23.
- Barns, S. M., Lane, D. L., Sogin, M. L., Bibeau, C. and Weisburg, W. G., 1991. Evolutionary relationship among pathogenic Candida species and relatives. J. Bacteriol., 173, 2250–2255.
- Bidenne, C., Blondin, B., Dequin, S. and Vezinhet, F., 1992. Analysis of the chromosomal DNA polymorphism of wine strains of Saccharomyces cerevisiae. Curr. Genet., 22, 1–7.
- Buitkamp, J., Ammer, H. and Geldermann, H., 1991. DNA fingerprinting in domestic animals. Electrophoresis, 12, 169–175.
- Camougrand, N., Mila, B., Velours, G., Lazowska, J. and Guerin, M., 1988. Discrimination between different groups of Candida parapsilosis by mitochondrial DNA restriction analysis. Curr. Genet., 13, 445–449.
- Crowhurst, R. N., Hawthorne, B. T., Rikkerink, E. H. A. and Templeton M. D., 1991. Differentiation of Fusarium solani f. sp. cucurbitae races 1 and 2 by random amplification of polymorphic DNA. Curr. Genet., 20, 391–396.
- Epplen, J. T., 1988. On simple repeated GATA/GACA sequences in animal genomes: a critical reappraisal. J. Heredity, 79, 409–417.
- Fuson, G. B., Presley, H. L. and Phaff, H. J., 1987. Deoxyribonucleic acid base sequence relatedness among members of the yeast genus. Int. J. Syst. Bact., 37, 371–379.
- Gardes, M., 1991. Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA. Canad. J. Bot., 69, 180–189.
- Goodwin, P. H. and Annis, S. L., 1991. Rapid identification of genetic variation and pathotype of Leptosphaeria maculans by random amplified polymorphic DNA assay. Appl. Environm. Microbiol., 57, 2482–2486.
- Gruber, F., 1990. Homologe und heterologe Transformation von Trichoderma reesei mit den Orotidin-5′-Phosphat-Decarboxylase Genen als Selektionsmarker. Thesis, Technische Universität Wien, Austria.
- Hendriks, L., Goris, A., Vandepeer, Y., Neefs, J. M., Vancanneyt, M., Kersters, K., Berny, J. F., Hennebert, G. L. and Dewachter, R., 1992. Phylogenetic relationships among ascomycetes and ascomycete-like yeasts as deduced from small ribosomal subunits RNA sequences. Syst. Appl. Microbiol., 15, 98–104.
- Jeffreys, A. J., Wilson, V. and Thein, S. L., 1985. Hypervariable ‘minisatellite’ regions in human DNA. Nature, 314, 120–136.
- Kayser, T. and Wöstemeyer, J., 1991. Electrophoretic karyotype of the zygomycete Absidia glauca: evidence for differences between mating types. Curr. Genet., 19, 279–284.
- Kurtzmann, C. P., 1992. rRNA sequence comparisons for assessing phylogenetic relationships among yeasts. Int. J. Syst. Bacteriol., 42, 1–6.
- Leth, S., Bak, A. and Stenderup, A., 1969. Deoxyribonucleic acid homology in yeasts. Genetic relatedness within the genus Candida. J. Gen. Microbiol., 59, 21–30.
- Magee, B. B., D'Souza, T. M. and Magee, P. T., 1987. Strain and species identification by restriction fragment length polymorphisms in the ribosomal DNA repeat of Candida species. J. Bacteriol., 169, 1639–1643.
- Maniatis, T., Fritsch, E. and Sambrook, J., 1982. Molecular Cloning: a Laboratory Manual. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York, USA.
- Meyer, W., 1991. Nachweis hypervariabler repetitiver DNA-Sequenzen bei Pilzen mittels DNA-Fingerprinting. Thesis, Humboldt-Universität Berlin, Germany.
- Meyer, W., Koch, A., Niemann, C., Beyermann, B., Epplen, J. T. and Börner, T., 1991. Differentiation of species and strains among filamentous fungi by DNA-fingerprinting. Curr. Genet., 19, 239–242.
- Meyer, W., Lieckfeldt, E., Kayser, T., Nürnberg, P., Epplen, J. T. and Börner, T., 1992a. Fingerprinting fungal genomes with phage M13 DNA and oligonucleotide probes specific for simple repetitive DNA sequences. In: G. Kahl, H. Appelhans, J. Kömpf, A. J. Driesel (eds.), DNA-Polymorphisms in Eukaryotic Genomes. Hüthig Verlag, Heidelberg, Germany.
- Meyer, W., Morawetz, R., Börner, T. and Kubicek, C. P., 1992b. The use of DNA-fingerprint analysis in classification of some species of the Trichodema-aggregate. Curr. Genet., 21, 27–30.
- Olivio, P. D., McManus, E. J., Riggsby, W. S. and Jones, M., 1987. Mitochondrial DNA polymorphism in Candida albicans. J. Infect. Diseases. 156, 214–215.
- Schmid, J., Voss, W. and Soll, D. R., 1990. Computer-assisted methods for assessing relatedness in Candida albicans by fingerprinting with the moderately repetitive sequence Ca3. J. Clin. Microbiol., 28, 1236–1243.
- Vaughan Martini, A. and Martini, A. 1987. Three newly delimited species of Saccharomyces sensu stricto. A. van Leeuwenhoek, 53, 77–84.
- Walmsley, R. M., Wikinson, B. M. and Kong, T. H., 1989. Genetic fingerprinting for yeasts. Bio Tec., 7, 1168–1170.
- Welsh, J. and McClelland, M., 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucl. Acids Res., 19, 303–306.
- Weising, K., Beyermann, B., Ramser, J. and Kahl, G., 1991. Plant DNA fingerprinting with radioactive and digoxigenated oligonucleotide probes complementary to simple repetitive DNA sequences. Electrophoresis, 12, 159–169.
- Wetton, J. H., Carter, R. E., Parkin, D. T. and Walters, D., 1987. Demographic study of a wild house sparrow population by DNA fingerprinting. Nature, 327, 147–149.
- Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A. and Tingey, S. V., 1990. DNA polymorphisms amplified by arbitrary primers are useful genetic markers. Nucl. Acids Res., 18, 6531–6535.