Incorporating DC bias voltage in poly-harmonic distortion modeling for RF power GaN transistors
Shuhao Cheng
The Key Laboratory of RF Circuit and System, Ministry of Education, Hangzhou Dianzi University, Hangzhou, China
Search for more papers by this authorXiaoqiang Tang
The Key Laboratory of RF Circuit and System, Ministry of Education, Hangzhou Dianzi University, Hangzhou, China
Search for more papers by this authorZlatica Marinković
Faculty of Electronic Engineering, University of Niš, Niš, Serbia
Search for more papers by this authorGiovanni Crupi
BIOMORF Department, University of Messina, Messina, Italy
Search for more papers by this authorCorresponding Author
Jialin Cai
The Key Laboratory of RF Circuit and System, Ministry of Education, Hangzhou Dianzi University, Hangzhou, China
Correspondence
Jialin Cai, The Key Laboratory of RF Circuit and System, Ministry of Education, Hangzhou Dianzi University, Hangzhou, China.
Email: [email protected]
Search for more papers by this authorShuhao Cheng
The Key Laboratory of RF Circuit and System, Ministry of Education, Hangzhou Dianzi University, Hangzhou, China
Search for more papers by this authorXiaoqiang Tang
The Key Laboratory of RF Circuit and System, Ministry of Education, Hangzhou Dianzi University, Hangzhou, China
Search for more papers by this authorZlatica Marinković
Faculty of Electronic Engineering, University of Niš, Niš, Serbia
Search for more papers by this authorGiovanni Crupi
BIOMORF Department, University of Messina, Messina, Italy
Search for more papers by this authorCorresponding Author
Jialin Cai
The Key Laboratory of RF Circuit and System, Ministry of Education, Hangzhou Dianzi University, Hangzhou, China
Correspondence
Jialin Cai, The Key Laboratory of RF Circuit and System, Ministry of Education, Hangzhou Dianzi University, Hangzhou, China.
Email: [email protected]
Search for more papers by this authorAbstract
This paper presents a novel poly-harmonic distortion (PHD) model that incorporates the DC input and output bias voltages using Gaussian process regression (GPR). Simulation tests were conducted using a 10-W gallium nitride (GaN) HEMT transistor from Wolfspeed, and the model implementation test was performed in the Keysight Advanced Design System environment. The results showed that the GPR-based PHD model exhibited good performance in predicting both fundamental and harmonic behaviors over a wide range of bias variations with significant advantages over basic linear regression methods. Additionally, the model accurately predicted load-pull simulations. The measurement test was conducted using a 6-W GaN device, and the results showed a mean error of 2.22% and 4.54% for the fundamental and second harmonic of the reflected wave, respectively.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
REFERENCES
- 1Cripps SC. RF Power Amplifier for Wireless Communications. 2nd ed. Artech House; 2006.
- 2Baylis C, Marks RJ, Martin J, Miller H, Moldovan M. Going nonlinear. IEEE Microw Mag. 2011; 12(2): 55-64. doi:10.1109/MMM.2010.940102
- 3Heimlich M. Get on the same nonlinear page. IEEE Microw Mag. 2011; 12(2): 32-37. doi:10.1109/MMM.2010.940100
- 4Mishra UK, Shen L, Kazior TE, Wu YF. GaN based RF power devices and amplifiers. Proc IEEE. 2008; 96(2): 287-305.
- 5Qiu YJ, Xu YH, Xu RM, Lin WG. Compact hybrid broadband GaN HEMT power amplifier based on feedback technique. Electron Lett. 2013; 49(5): 372-374.
- 6Santarelli A, Cignani R, Gibiino GP, et al. A double-pulse technique for the dynamic I/V characterization of GaN FETs. IEEE Microw Wireless Compon Lett. 2014; 24(2): 132-134.
- 7Joh J, del Alamo JA. A current-transient methodology for trap analysis for GaN high electron mobility transistors. IEEE Trans Electron Dev. 2011; 58(1): 132-140.
- 8Barradas FM, Nunes LC, Cunha TR, Lavrador PM, Cabral PM, Pedro JC. Compensation of long-term memory effects on GaN HEMT-based power amplifiers. IEEE Trans Microw Theory Techn. 2017; 65(9): 3379-3388.
- 9Wu Q, Xu Y, Chen Y, et al. A scalable multiharmonic surface-potential model of AlGaN/GaN HEMTs. IEEE Trans Microw Theory Techn. 2018; 66: 1192-1200.
- 10Raffo A, Vadalà V, Yamamoto H, et al. A new modeling technique for microwave multicell transistors based on EM simulations. IEEE Trans Microw Theory Techn. 2020; 68: 3100-3110.
- 11Qu Y, Crupi G, Cai J. A broadband PA design based on Bayesian optimization augmented by dynamic feasible region shrinkage. IEEE Microw Wireless Comp Lett. 2022; 32(10): 1139-1142.
- 12Mao S, Zhang W, Yao Y, et al. A yield-improvement method for millimeter-wave GaN MMIC power amplifier design based on load—pull analysis. IEEE Trans Microw Theory Techn. 2021; 69(8): 3883-3895.
- 13Wu M, Crupi G, Yu C, Cai J. Application of X-parameter model of gallium nitride device for a continuous broadband Doherty power amplifier design. Int J Numer Model Electron Netw Dev Field. 2023; 36(4):e3072.
- 14Ghosh S, Dasgupta A, Khandelwal S, Agnihotri S, Chauhan YS. Surface-potential-based compact modeling of gate current in AlGaN/GaN HEMTs. IEEE Trans Electron Dev. 2015; 62(2): 443-448.
- 15Khandelwal S, Chauhan YS, Fjeldly TA. Analytical modeling of surface-potential and intrinsic charges in AlGaN/GaN HEMT devices. IEEE Trans Electron Dev. 2012; 59(10): 2856-2860.
- 16Khandelwal S, Fjeldly TA. A physics based compact model of I—V and C—V characteristics in AlGaN/GaN HEMT devices. Solid-State Electron. 2012; 76: 60-66.
- 17Vadalà V, Raffo A, Avolio G, Marchetti M, Schreurs DMM-P, Vannini G. A new dynamic-bias measurement setup for nonlinear transistor model identification. IEEE Trans Microw Theory Techn. 2017; 65(1): 218-228.
- 18Brady RG, Oxley CH, Brazil TJ. An improved small-signal parameter-extraction algorithm for GaN HEMT devices. IEEE Trans Microw Theory Techn. 2008; 56(7): 1535-1544.
- 19Guang Chen V, Kumar RS, Schwindt RS, Adesida I. A low gate bias model extraction technique for AlGaN/GaN HEMTs IEEE trans. Microw Theory Techn. 2006; 54(7): 2949-2953.
- 20Yuk KS, Branner GR, McQuate DJ. A wideband multiharmonic empirical large-signal model for high-power GaN HEMTs with self-heating and charge-trapping effects. IEEE Trans Microw Theory Techn. 2009; 57(12): 3322-3332.
- 21Chen Y, Xu Y, Luo Y, et al. A reliable and efficient small-signal parameter extraction method for GaN HEMTs. Int J Numer Model Electron Netw Dev Field. 2020; 33:e2540.
- 22Jarndal A, Crupi G, Alim MA, Vadalà V, Raffo A, Vannini G. Equivalent-circuit extraction for gallium nitride electron devices: direct versus optimization-empowered approaches. Int J Num Model Electron Netw Dev Fields. 2022; 35(5):e3008.
- 23Crupi G, Latino M, Gugliandolo G, et al. A comprehensive overview of the temperature-dependent modeling of the high power GaN HEMT technology using mm-wave scattering parameter measurements (invited paper). Electronics. 2023; 12: 1771.
- 24Verspecht J, Root DE. Poly harmonic distortion modeling. IEEE Microw Mag. 2006; 7(3): 44-57.
- 25Root DE, Verspecht J, Horn J, Marcu M. X-parameters. Cambridge University Press; 2013: 112-148.
10.1017/CBO9781139042970.006 Google Scholar
- 26Qi H, Benedikt J, Tasker PJ. Nonlinear data utilization: from direct data lookup to behavioral modeling. IEEE Trans Microw Theory Techn. 2009; 57(6): 1425-1432.
- 27Tasker PJ, Benedikt J. Waveform inspired models and the harmonic balance emulator. IEEE Microw Mag. 2011; 12(2): 38-54.
- 28Cai J, King J, Merrick B, Brazil TJ. Padé-approximation-based behavioral modeling. IEEE Trans Microw Theory Techn. 2013; 61(12): 4418-4427.
- 29Cai J, King JB, Zhu A, Pedro JC, Brazil TJ. Nonlinear behavioral modeling dependent on load reflection coefficient magnitude. IEEE Trans Microw Theory Techn. 2015; 63(5): 1518-1529.
- 30Cai J, Liu J, Su J, et al. Behavioral model for RF power transistors based on canonical section-wise piecewise linear functions. IEEE Trans Microw Theory Techn. 2020; 68(4): 1409-1422.
- 31Marinković Z, Crupi G, Caddemi A, Marković V, Schreurs DMM-P. A review on the artificial neural network applications for small-signal modeling of microwave FETs. Int J Num Modell Electr Netw Dev Fields. 2020; 33(3):e2668.
- 32Azad EM, Bell JJ, Quaglia R, Rubio JJM, Tasker PJ. Gate bias incorporation into cardiff behavioural modelling formulation. IEEE MTT-S Int Microw Symp Dig, Los Angeles, CA. 2020; 420-423.
- 33Azad EM, Bell JJ, Quaglia R, Rubio JJM, Tasker PJ. New formulation of cardiff behavioral model including DC bias voltage dependence. IEEE Microw Wireless Compon Lett. 2022; 32(6): 607-610.
- 34Ghahramani Z. A tutorial on gaussian processes. MLSS Workshop Talk by Zoubin Ghahramani on Gaussian Processes; 2011 http://mlss2011.comp.nus.edu.sg/uploads/Site/lect1gp.pdf