Cardiac T1 mapping: Techniques and applications
Corresponding Author
Emily Aherne MB, BCh, BAO
Department of Radiology, Northwestern University, Chicago, Illinois, USA
Address reprint requests to: E.A.A., Department of Radiology, 676 N. St Clair St., Suite 800, Chicago, IL 60611. E-mail: [email protected]Search for more papers by this authorKelvin Chow PhD
Department of Radiology, Northwestern University, Chicago, Illinois, USA
Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc., Chicago, Illinois, USA
Search for more papers by this authorJames Carr MB, BCh, BAO
Department of Radiology, Northwestern University, Chicago, Illinois, USA
Search for more papers by this authorCorresponding Author
Emily Aherne MB, BCh, BAO
Department of Radiology, Northwestern University, Chicago, Illinois, USA
Address reprint requests to: E.A.A., Department of Radiology, 676 N. St Clair St., Suite 800, Chicago, IL 60611. E-mail: [email protected]Search for more papers by this authorKelvin Chow PhD
Department of Radiology, Northwestern University, Chicago, Illinois, USA
Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc., Chicago, Illinois, USA
Search for more papers by this authorJames Carr MB, BCh, BAO
Department of Radiology, Northwestern University, Chicago, Illinois, USA
Search for more papers by this authorAbstract
A key advantage of cardiac magnetic resonance (CMR) imaging over other cardiac imaging modalities is the ability to perform detailed tissue characterization. CMR techniques continue to evolve, with advanced imaging sequences being developed to provide a reproducible, quantitative method of tissue interrogation. The T1 mapping technique, a pixel-by-pixel method of quantifying T1 relaxation time of soft tissues, has been shown to be promising for characterization of diseased myocardium in a wide variety of cardiomyopathies. In this review, we describe the basic principles and common techniques for T1 mapping and its use for native T1, postcontrast T1, and extracellular volume mapping. We will review a wide range of clinical applications of the technique that can be used for identification and quantification of myocardial edema, fibrosis, and infiltrative diseases with illustrative clinical examples. In addition, we will explore the current limitations of the technique and describe some areas of ongoing development.
Level of Evidence: 5
Technical Efficacy: Stage 2
J. Magn. Reson. Imaging 2020;51:1336–1356.
References
- 1Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 1999; 100: 1992–2002.
- 2Ferreira PF, Gatehouse PD, Mohiaddin RH, Firmin DN. Cardiovascular magnetic resonance artefacts. J Cardiovasc Magn Reson 2013; 15: 41.
- 3Look DC, Locker DR. Time saving in measurement of NMR and EPR relaxation times. Rev Sci Instrum 1970; 41: 250–251.
- 4Deichmann R, Haase A. Quantification of T1 values by Snapshot-FLASH NMR imaging. J Magn Reson 1992; 96: 608–612.
- 5Gai N, Turkbey EB, Nazarian S, et al. T1 mapping of the gadolinium-enhanced myocardium: Adjustment for factors affecting interpatient comparison. Magn Reson Med 2011; 65: 1407–1415.
- 6Nacif MS, Turkbey EB, Gai N, et al. Myocardial T1 mapping with MRI: Comparison of Look-Locker and MOLLI sequences. J Magn Reson Imaging 2011; 34: 1367–1373.
- 7Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high resolution T1 mapping of the heart. Magn Reson Med 2004; 52: 141–146.
- 8Kellman P, Hansen MS. T1-mapping in the heart: Accuracy and precision. J Cardiovasc Magn Reson 2014; 16: 2.
- 9Messroghli DR, Greiser A, Frohlich M, Dietz R, Schulz-Menger J. Optimization and validation of a fully integrated pulse sequence for modified Look-Locker inversion recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging 2007; 26: 1081–1086.
- 10Gai ND, Stehning C, Nacif M, Bluemke DA. Modified Look-Locker T(1) evaluation using Bloch simulations: Human and phantom validation. Magn Reson Med 2013; 69 : 329–336.
- 11Robson MD, Piechnik SK, Tunnicliffe EM, Neubauer S. T1 measurements in the human myocardium: The effects of magnetization transfer on the SASHA and MOLLI sequences. Magn Reson Med 2013; 670: 664–670.
- 12Kellman P, Herzka DA, Arai AE, Hansen MS. Influence of off-resonance in myocardial T1-mapping using SSFP based MOLLI method. J Cardiovasc Magn Reson 2013; 15: 63.
- 13Kellman P, Herzka DA, Hansen MS. Adiabatic inversion pulses for myocardial T1 mapping. Magn Reson Med 2014; 71: 1428–1434.
- 14Piechnik SK, Ferreira VM, Dall'Armellina E, et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 2010; 12: 69.
- 15Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T(1) mapping. Magn Reson Med 2013; 70: 1274–1282.
- 16Slavin GS, Hood MN, Ho VB, Stainsby JA. Breath-held myocardial T1 mapping using multiple single-point saturation recovery. In: Proc 20th Annual Meeting ISMRM, Melbourne; 2012. p 1244.
- 17Higgins DM, Ridgway JP, Radjenovic A, Sivananthan UM, Smith MA. T1 measurement using a short acquisition period for quantitative cardiac applications. Med Phys 2005; 32: 1738–1746.
- 18Wacker CM, Bock M, Hartlep AW, et al. Changes in myocardial oxygenation and perfusion under pharmacological stress with dipyridamole: Assessment using T*2 and T1 measurements. Magn Reson Med 1999; 41: 686–695.
10.1002/(SICI)1522-2594(199904)41:4<686::AID-MRM6>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- 19Roujol S, Weingartner S, Foppa M, et al. Accuracy, precision and reproducibility of four T1 mapping sequences: A head to head comparison of MOLLI, ShMOLLI, SASHA and SAPPHIRE. Radiology 2014; 272: 683–689.
- 20Chow K, Flewitt J, Pagano JJ, Green JD, Friedrich MG, Thompson RB. T2-dependent errors in MOLLI T1 values: Simulations, phantoms, and in-vivo studies. J Cardiovasc Magn Reson 2012; 14(Suppl 1): P281.
10.1186/1532-429X-14-S1-P281 Google Scholar
- 21Chow K, Spottiswoode BS, Pagano JJ, Thompson RB. Improved precision in SASHA T1 mapping with a variable flip angle readout. J Cardiovasc Magn Reson 2014; 16(Suppl 1): M9.
- 22Kellman P, Xue H, Chow K, Spottiswoode BS, Arai AE, Thompson RB. Optimized saturation recovery protocols for T1-mapping in the heart: Influence of sampling strategies on precision. J Cardiovasc Magn Reson 2014; 16: 55.
- 23Chow K, Flewitt JA, Sandonato R, et al. Reproducibility and performance of SASHA and MOLLI T1 mapping in volunteers at 1.5T and 3T. In: Proc SCMR 2018 Conference. p 863.
- 24Weingärtner S, Akçakaya M, Basha T, et al. Combined saturation/inversion recovery sequences for improved evaluation of scar and diffuse fibrosis in patients with arrhythmia or heart rate variability. Magn Reson Med 2014; 71: 1024–1034.
- 25Guo R, Chen Z, Wang Y, Herzka DA, Luo J, Ding H. Three-dimensional free breathing whole heart cardiovascular magnetic resonance T1 mapping at 3 T. J Cardiovasc Magn Reson 2018; 20: 64.
- 26Chen Y, Lo WC, Hamilton JI, et al. Single breath-hold 3D cardiac T1 mapping using through-time spiral GRAPPA. NMR Biomed 2018; 31:e3923.
- 27Nordio G, Henningsson M, Chiribiri A, Villa ADM, Schneider T, Botnar RM. 3D myocardial T1 mapping using saturation recovery. J Magn Reson Imaging 2017; 46: 218–227.
- 28Chow K, Yang Y, Shaw P, Kramer CM, Salerno M. Robust free-breathing SASHA T1 mapping with high-contrast image registration. J Cardiovasc Magn Reson 2016; 18: 47.
- 29Moon JC, Messroghli DR, Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: A Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology Consensus Statement. J Cardiovasc Magn Reson 2013; 15: 92.
- 30Messroghli DR, Moon JC, Ferreira VM, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society of Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 2017; 19: 75.
- 31Schelbert EB, Testa SM, Meier CG, et al. Myocardial extravascular volume fraction measurement by gadolinium cardiovascular magnetic resonance in humans: Slow infusion versus bolus. J Cardiovasc Magn Reson 2011; 13: 16.
- 32Kawel N, Nacif M, Zavodni A, et al. T1 mapping of the myocardium intra-individual assessment of the effect of field strength, cardiac cycle and variation by myocardial region. J Cardiovasc Magn Reson 2012; 14: 27.
- 33Flett AS, Hayward MP, Ashworth MT, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: Preliminary validation in humans. Circulation 2010; 122: 138–144.
- 34Miller CA, Naish J, Bishop P, et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging 2013; 6: 373–383.
- 35Treibel TA, Fontana M, Maestrini V, et al. Automatic measurement of the myocardial interstitium: Synthetic extracellular volume quantification without hematocrit sampling. J Am Coll Cardiol Imaging 2016; 9: 54–63.
- 36Dabir D, Child N, Kalra A, et al. Reference values for healthy human myocardium using a T1 mapping methodology: Results from the International T1 Multicenter Cardiovascular Magnetic Resonance Study. J Cardiovasc Magn Reson 2014; 16: 69.
- 37Rauhalammi SM, Mangion K, Barrientos PH, et al. Native myocardial longitudinal (T1) relaxation time: Regional, age, and sex associations in the healthy adult heart. J Magn Reson Imaging 2016; 44: 541–548.
- 38Rosimini S, Bulluck H, Captur G, et al. Myocardial native T1 and extracellular volume with healthy aging and gender. Eur Heart J Cardiovasc Imaging 2019; 9: 615–621.
- 39Bulluck H, Bryant JA, Tan JZ, et al. Gender differences in native myocardial T1 in a healthy Chinese volunteer cohort. Cardiovasc Imaging Asia 2017; 1: 110–115.
10.22468/cvia.2016.00129 Google Scholar
- 40Costello BT, Springer F, Hare JL, et al. SASHA versus ShMOLLI: A comparison of T1 mapping methods in health and dilated cardiomyopathy at 3T. Int J Cardiovasc Imaging 2017; 33: 1551–1560.
- 41Kellman P, Arai AE, Xue H. T1 and extracellular volume mapping in the heart: Estimation of error maps and the estimation of noise on precision. J Cardiovasc Magn Reson 2013; 15: 56.
- 42Piechnik SK, Ferreira VM, Lewandowski AJ, et al. Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson 2013; 15: 13.
- 43Fontana M, White SK, Banypersad SM, et al. Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multi-breath-hold T1 quantification equilibrium contrast CMR. J Cardiovasc Magn Reson 2012; 14: 88.
- 44Liu CY, Bluemke DA, Gerstenblith G, et al. Reference values of myocardial structure, function and tissue composition by cardiac magnetic resonance in healthy African-Americans at 3T and their relations to serologic and cardiovascular risk factors. Am J Cardiol 2014; 114: 789–795.
- 45Liu CY, Liu YC, Wu C, et al. Evaluation of age-related interstitial myocardial fibrosis with cardiac magnetic resonance contrast-enhanced T1 mapping: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 2013; 62: 1280–1287.
- 46von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA, et al. Myocardial T1 and T2 mapping at 3 T: Reference values, influencing factors and implications. J Cardiovasc Magn Reson 2013; 15: 53.
- 47Ferreira VM, Piechnik SK, Dall'Armellina E, et al. T(1) mapping for the diagnosis of acute myocarditis using CMR: Comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging 2013; 6: 1048–1058.
- 48Hinojar R, Foote L, Arroyo Ucar E, et al. Native T1 in discrimination of acute and convalescent stages in patients with clinical diagnosis of myocarditis: A proposed diagnostic algorithm using CMR. JACC Cardiovasc Imaging 2015; 8: 37–46.
- 49Radunski UK, Lund GK, Stehning C, et al. CMR in patients with severe myocarditis: Diagnostic value of quantitative tissue markers including extracellular volume imaging. JACC Cardiovasc Imaging 2014; 7: 667–675.
- 50Verhaert D, Thavendiranathan P, Giri S, et al. Direct T2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc Imaging 2011; 4: 269–278.
- 51Ferreira VM, Piechnik SK, Dall'Armellina E, et al. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: A comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012; 14: 42.
- 52Yu J, Guensch DP, Fischer K, Nadeshalingham G, Friedrich MG. Performance of T1 mapping vs. T2 mapping for assessing myocardial edema. J Cardiovasc Magn Reson 2014;16(Suppl 1):O16.
- 53Caforio AL, Pankuweit S, Arbustini E, et al. European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2013; 34: 2636–2648.
- 54Kindermann I, Barth C, Mahfoud F, et al. Update on myocarditis. J Am Coll Cardiol 2012; 59: 779–792.
- 55Lurz P, Luecke C, Eitel I, et al. Comprehensive cardiac magnetic resonance imaging in patients with suspected myocarditis: The MyoRacer-Trial. J Am Coll Cardiol 2016; 67: 1800–1811.
- 56Kinderman I, Kinderman M, Kandolf R, et al. Predictors of outcome in patients with suspected myocarditis. Circulation 2008; 118: 639–648.
- 57Cooper LT, Baughman KL, Feldman AM, et al. The role of endomyocardial biopsy in the management of cardiovascular disease: A scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Circulation 2007; 116: 2216–2233.
- 58Lurz P, Eitel I, Adam J, et al. Diagnostic performance of CMR imaging compared with EMB in patients with suspected myocarditis. JACC Cardiovasc Imaging 2012; 5: 513–524.
- 59Friedrich MG, Sechtem U, Schulz-Menger J, et al. Cardiovascular magnetic resonance in myocarditis: A JACC white paper. JACC 2009; 53: 1475–1487.
- 60Bohnen S, Radunski UK, Lund GK, et al. Tissue characterization by T1 and T2 mapping cardiovascular magnetic resonance imaging to monitor myocardial inflammation in healing myocarditis. Eur Heart J Cardiovasc Imaging 2017; 18: 744–751.
- 61Luetkens JA, Doerner J, Thomas DK, et al. Acute myocarditis: Multiparametric cardiac MR imaging. Radiology 2014; 273: 383–392.
- 62Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: Expert Recommendations. JACC 2018; 72: 3158–3176.
- 63Abdel-Aty H, Cocker M, Meek C, Tyberg JV, Friedrich MG. Edema as a very early marker for acute myocardial ischemia: A cardiovascular magnetic resonance study. J Am Coll Cardiol 2009; 53: 1194–1201.
- 64Messroghli DR, Walters K, Plein S, Friedrich MG, Ridgway JP, Sivanantha MU. Myocardial T1 mapping: Application to patients with acute and chronic myocardial infarction. Magn Reson Med 2007; 58: 34–40.
- 65Dastidar AG, Harries I, Pontecorboli G, et al. Native T1 mapping to detect extent of acute and chronic myocardial infarction: Comparison with late gadolinium enhancement technique. Int J Cardiovasc Imaging 2018 [Epub ahead of print] doi: https://doi.org/10.1007/s10554-018-1467-1.
- 66Scally C, Rudd A, Mezincescu A, et al. Persistent long-term structural, functional and metabolic changes after stress induced (Takotsubo) cardiomyopathy. Circulation 2018; 137: 1039–1048.
- 67Chambers DC, Cherikh WS, Goldfarb SB, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart-lung Transplantation: Thirty-fifth adult lung and heart-lung transplant report 2018. J Heart Lung Transplant 2018; 37: 1169–1183.
- 68Vermes E, Pantaleaon C, Pucheux J, Mirza A, Delhommais A, Sirinelli A. Diagnostic value of quantitative tissue markers (T2 mapping and ECV) for acute cardiac rejection diagnosis: A preliminary experience. J Heart Lung Transpl 2014; 35: S193.
- 69Dolan RS, Rahsepar AA, Blaisdell J, et al. Multiparametric cardiac magnetic resonance imaging can detect acute cardiac allograft rejection after heart transplantation. JACC Cardiovasc Imaging 2019 [Epub ahead of print] doi: https://doi.org/10.1016/j.jcmg.2019.01.026.
- 70Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiac magnetic resonance. J Am Coll Cardiol 2011; 57: 891–903.
- 71Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 2013; 10: 15–26.
- 72Kuruvilla S, Adenaw N, Katwal AB, Lipinski MJ, Kramer CM, Salerno M. Late gadolinium enhancement on CMR predicts adverse cardiovascular outcomes in non-ischemic cardiomyopathy: A systematic review and meta-analysis. Circ Cardiovasc Imaging 2014; 7: 250–258.
- 73Puntmann VO, Voigt T, Chen Z, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging 2013; 6: 475–484.
- 74aus dem Siepen F, Buss SJ, Messroghli D, et al. T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: Quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging 2015; 16: 210–216.
- 75Puntmann VO, Carr-White G, Jabbour A, et al. T1-mapping and outcome in nonischemic cardiomyopathy: All-cause mortality and heart failure. International T1 Multicentre CMR Outcome Study. JACC Cardiovasc Imaging 2016; 9: 40–50.
- 76Youn JC, Hong YJ, Lee HJ, et al. Contrast-enhanced T1 mapping-based extracellular volume fraction independently predicts clinical outcome in patients with non-ischemic dilated cardiomyopathy: A prospective cohort study. Eur Radiol 2017; 27: 3924–3933.
- 77Klues HG, Schiffers A, Maron BJ. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: Morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. J Am Coll Cardiol 1995; 26: 1699–1708.
- 78Davies MJ, McKenna WJ. Hypertrophic cardiomyopathy—Pathology and pathogenesis. Histopathology 1995; 26: 493–500.
- 79Maron MS, Maron BJ, Harrigan C, et al. Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J Am Coll Cardiol 2009; 54: 220–228.
- 80Dass S, Suttie JJ, Piechnik SK, et al. Myocardial tissue characterization using magnetic resonance non-contrast T1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging 2012; 5: 726–733.
- 81Hinojar R, Varma N, Child N, et al. T1 mapping in discrimination of hypertrophic phenotypes: Hypertensive heart disease and hypertrophic cardiomyopathy: Findings from the International T1 Multicenter Cardiovascular Magnetic Resonance Study. Circ Cardiovasc Imaging 2015; 8.
- 82Swoboda PP, McDiarmid AK, Erhayiem B, et al. Assessing myocardial extracellular volume by T1 mapping to distinguish hypertrophic cardiomyopathy from athlete's heart. J Am Coll Cardiol 2016; 67: 2189–2190.
- 83Towbin JA, Lorts A, Jeffries JL. Left ventricular non-compaction cardiomyopathy. Lancet 2015; 386: 813–825.
- 84Zhou H, Lin X, Fang L, et al. Characterization of compacted myocardial abnormalities by cardiac magnetic resonance with native T1 mapping in Left ventricular non compaction patients: A comparison with late gadolinium enhancement. Circ J 2016; 80: 1210–1216.
- 85Owan TE, Hodge DO, Herges RM, Jacobsen S, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 2006; 355: 251–259.
- 86Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure—Abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 2004; 350: 1953–1959.
- 87Westermann D, Kasner M, Steendijk P, et al. Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation 2008; 117: 2051–2060.
- 88Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 2013; 62: 263–271.
- 89Su MM, Lin L, Tseng YE, et al. CMR-verified diffuse myocardial fibrosis is associated with diastolic dysfunction in HFpEF. JACC Cardiovasc Imaging 2014; 7: 991–997.
- 90Maceira AM, Joshi J, Prasad SK, et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2005; 111: 186–193.
- 91White JA, Kim HW, Shah D, et al. CMR imaging with rapid visual T1 assessment predicts mortality in patients suspected of cardiac amyloidosis. J Am Coll Cardiol Imaging 2014; 7: 143–156.
- 92Karamitsos TD, Piechnik, Banypersad SM, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013; 6: 488–497.
- 93Fontana M, Banypersad SM, Treibel TA, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging 2014; 7: 157–165.
- 94Matsui Y, Iwai K, Tachibana T, et al. Clinicopathological study of fatal myocardial sarcoidosis. Ann N Y Acad Sci 1976; 278: 455–469.
- 95Puntmann VO, Isted A, Hinojar R, Foote L, Carr-White G, Nagel E. T1 and T2 mapping in recognition of early cardiac involvement in systemic sarcoidosis. Radiology 2017; 285: 63–72.
- 96Ntusi NAB, Piechnik SK, Francis JM, et al. Diffuse myocardial fibrosis and inflammation in rheumatoid arthritis: Insights from CMR T1 mapping. JACC Cardiovasc Imaging 2015; 8: 526–536
- 97Ntusi NA, Piechnik SK, Francis JM, et al. Subclinical myocardial inflammation and diffuse fibrosis are common in systemic sclerosis—A clinical study using myocardial T1-mapping and extracellular volume quantification. J Cardiovasc Magn Reson 2014; 16: 21.
- 98Puntmann VO, D'Cruz D, Smith Z, et al. Native myocardial T1 mapping by cardiovascular magnetic resonance imaging in subclinical cardiomyopathy in patients with systemic lupus erythematosus. Circ Cardiovasc Imaging 2013; 6: 295–301.
- 99Breuer W, Hershko C, Cabantchik ZI. The importance of non-transferrin bound iron in disorders of iron metabolism. Transfus Sci 2000; 23: 185–192.
- 100Anderson IJ, Holden S, Davis B, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 2001; 22: 2171–2179.
- 101Feng Y, He T, Carpenter JP, et al. In vivo comparison of myocardial T1 with T2 and T2* in thalassaemia major. J Magn Reson Imaging 2013; 38: 588–593.
- 102Sado DM, Maestrini V, Piechnik SK, et al. Noncontrast myocardial T1 mapping using cardiovascular magnetic resonance for iron overload. J Magn Reson Imaging 2015; 41: 1505–1511.
- 103Thomsen C, Christofferson P, Henriksen O, Juhl E. Prolonged T1 in patients with liver cirrhosis: An in vivo MRI study. Magn Reson Imaging 1990; 8: 599–604.
- 104Hoad CL, Palaniyappan N, Kaye P, et al. A study of T1 relaxation time as a measure of liver fibrosis and influence of confounding histological factors. NMR Biomed 2015; 28: 706–714.
- 105Banerjee R, Pavlides M, Tunnicliffe EM, et al. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol 2014; 60: 69–77.
- 106Tunnicliffe EM, Banerjee R, Pavlides M, Neubauer S, Robson MD. A model for hepatic fibrosis: The competing effects of cell loss and iron on shortened modified Look-Locker inversion recovery T1 (shMOLLI-T1) in the liver. J Magn Reson Imaging 2017; 45: 450–462.
- 107Larmour S, Chow K, Kellman P, Thompson RB. Characterization of T1 bias in skeletal muscle from fat in MOLLI and SASHA pulse sequences: Quantitative fat-fraction imaging with T1 mapping. Magn Reson Med 2017; 77: 237–249.
- 108Kellman P, Bandettini WP, Mancini C, Hammer-Hansen S, Hansen MS, Arai AE. Characterization of myocardial T1-maping bias caused by intramyocardial fat in inversion recovery and saturation recovery techniques. J Cardiovasc Magn Reson 2015; 17: 33.
- 109Moon JCC, Sachdev B, Elkington AG, et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J 2003; 24: 2151–2155.
- 110Sado DM, White SK, Piechnik SK, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging 2013; 6: 392–398.
- 111Thompson RB, Chow K, Khan A, et al. T1 mapping with cardiovascular MRI is highly sensitive for Fabry disease independent of hypertrophy and sex. Circ Cardiovasc Imaging 2013; 6: 637–645.
- 112Sibley CT, Noureldin RA, Gai N, et al. T1 mapping in cardiomyopathy at cardiac MR: Comparison with endomyocardial biopsy. Radiology 2012; 25: 74–732.
- 113Mahmod M, Piechnik SK, Levelt E, et al. Adenosine stress native T1 mapping in severe aortic stenosis: Evidence for a role of the intravascular compartment on myocardial T1 values. J Cardiovasc Magn Reson 2014; 16: 92.
- 114Liu A, Wijesurendra RS, Francis JM, et al. Adenosine stress and rest T1 mapping can differentiate between ischemic, infarcted, remote and normal myocardium without the need for gadolinium contrast agents. JACC Cardiovasc Imaging 2016; 9: 27–36.
- 115Liu A, Wijesurendra RS, Liu JM, et al. Gadolinium-free cardiac MR stress T1-mapping to distinguish epicardial from microvascular coronary disease. JACC 2018; 71: 957–968.
- 116Levelt E, Piechnik SK, Liu A, et al. Adenosine stress CMR T1-mapping detects early microvascular dysfunction in patients with type 2 diabetes mellitus without obstructive coronary artery disease. J Cardiovasc Magn Reson 2017; 19: 81.
- 117Bohnen S, Prussner L, Vettorazzi E, et al. Stress T1-mapping cardiovascular magnetic resonance imaging and inducible myocardial ischemia. Clin Res Cardiol 2019 [Epub ahead of print] doi:https://doi.org/10.1007/s00392-019-01421-1.
- 118Kuijpers D, Prakken NH, Vliegenthart R, van Dijkman PRM, van der Harst P, Oudkerk M. Caffeine intake inverts the effect of adenosine on myocardial perfusion during stress as measured by T1 mapping. Int J Cardiovasc Imaging 2016; 32: 1545–1553.
- 119Nakamori S, Fahmy A, Jang J, et al. Changes in myocardial T1 and T2 after supine exercise stress in healthy and ischemic myocardium: A pilot study. Circulation 2018; 138: A15014.
- 120Hong K, Jeong EK, Wall TS, Drakos SG, Kim D. Wideband arrhythmia-insensitive-rapid (AIR) pulse sequence for cardiac T1 mapping without image artifacts induced by an implantable-cardioverter-defibrillator. Magn Reson Med 2015; 74: 336–345.
- 121Shao J, Rashid S, Renella P, Nguyen KL, Hu P. Myocardial T1 mapping for patients with implanted cardiac devices using wideband inversion recovery spoiled gradient echo readout. Magn Reson Med 2017; 77: 1495–1504.
- 122Gottbrecht M, Kramer CM, Salerno M. Native T1 and extracellular volume measurements by cardiac MRI in healthy adults: A meta-analysis. Radiology 2019; 290: 317–326.
- 123Captur G, Gatehouse P, Keenan KE, et al. A medical device-grade T1 and ECV phantom for global T1 mapping quality assurance-the T1 Mapping and ECV Standardization in cardiovascular magnetic resonance (T1MES) program. J Cardiovasc Magn Reson 2016; 18: 58.
- 124Roy C, Slimani A, de Meester C, et al. Age and sex corrected normal reference values of T1, T2, T2* and ECV in healthy subjects at 3T CMR. J Cardiovasc Magn Reson 2017; 19: 72.
- 125Liu JM, Liu A, Leal J, et al. Measurement of myocardial native T1 in cardiovascular diseases and nom in 1291 subjects. J Cardiovasc Magn Reson 2017; 19: 74.
- 126Gottbrecht M, Kramer CM, Salnero M. Native T1 and extracellular volume measurements by cardiac MRI in healthy adults: A meta-analysis. Radiology 2019; 290: 317–326.
- 127Pagano JJ, Chow K, Paterson DI, et al. Effects of age, gender and risk factors for heart failure on native myocardial T1 and extracellular volume fraction using the SASHA sequence at 1.5T. J Magn Reson Imaging 2018; 47: 1307–1317.
- 128Hamilton JI, Jiang Y, Chen Y, et al. MR fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density. Magn Reson Med 2017; 77: 1446–1458.
- 129Shaw JL, Yang Q, Zhou Z, et al. Free-breathing, non-ECG, continuous myocardial T1 mapping with cardiovascular magnetic resonance multitasking. Magn Reson Med 2019; 81: 2450–2463.
- 130Fahmy AS, El-Rewaidy H, Nezafat M, Nakamori S, Nezafat R. Automated analysis of cardiovascular magnetic resonance myocardial native T1 mapping images using fully convolutional neural networks. J Cardiovasc Magn Reson 2019; 21: 7.
- 131Xiao-Ning S, Ying-Jie S, Kun-Tao, X, et al. Texture analysis of magnetic resonance T1 mapping with dilated cardiomyopathy: A machine learning approach. Medicine 2018; 97:e12246.
- 132Baessler B, Luecke C, Lurz J, et al. Cardiac MRI texture analysis of T1 and T2 maps in patients with infarctlike acute myocarditis. Radiology 2018; 289: 357–365.