X-nuclei imaging: Current state, technical challenges, and future directions
Corresponding Author
Ruomin Hu MS
Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
Address reprint requests to: R.H., Computer Assisted Clinical Medicine, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany. E-mail: [email protected]Search for more papers by this authorDennis Kleimaier MS
Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
Search for more papers by this authorMatthias Malzacher PhD
Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
Search for more papers by this authorMichaela A.U. Hoesl MS
Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
Search for more papers by this authorNadia K. Paschke MS
Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
Search for more papers by this authorLothar R. Schad PhD
Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
Search for more papers by this authorCorresponding Author
Ruomin Hu MS
Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
Address reprint requests to: R.H., Computer Assisted Clinical Medicine, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany. E-mail: [email protected]Search for more papers by this authorDennis Kleimaier MS
Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
Search for more papers by this authorMatthias Malzacher PhD
Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
Search for more papers by this authorMichaela A.U. Hoesl MS
Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
Search for more papers by this authorNadia K. Paschke MS
Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
Search for more papers by this authorLothar R. Schad PhD
Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
Search for more papers by this authorAbstract
1H imaging is concerned with contrast generation among anatomically distinct soft tissues. X-nuclei imaging, on the other hand, aims to reveal the underlying changes in the physiological processes on a cellular level. Advanced clinical MR hardware systems improved 1H image quality and simultaneously enabled X-nuclei imaging. Adaptation of 1H methods and optimization of both sequence design and postprocessing protocols launched X-nuclei imaging past feasibility studies and into clinical studies. This review outlines the current state of X-nuclei MRI, with the focus on 23Na, 35Cl, 39K, and 17O. Currently, various aspects of technical challenges limit the possibilities of clinical X-nuclei MRI applications. To address these challenges, quintessential physical and technical concepts behind different applications are presented, and the advantages and drawbacks are delineated. The working process for methods such as quantification and multiquantum imaging is shown step-by-step. Clinical examples are provided to underline the potential value of X-nuclei imaging in multifaceted areas of application. In conclusion, the scope of the latest technical advance is outlined, and suggestions to overcome the most fundamental hurdles on the way into clinical routine by leveraging the full potential of X-nuclei imaging are presented.
Level of Evidence: 1
Technical Efficacy Stage: 3
J. Magn. Reson. Imaging 2020;51:355–376.
References
- 1Aidley DL. The physiology of excitable cells. Cambridge, UK: Cambridge University Press: 1998.
- 2Bottomley PA. Sodium MRI in human heart: A review. NMR Biomed 2016; 29: 187–196.
- 3Burstein D, Springer CS Jr. Sodium MRI revisited. Magn Reson Med 2019 DOI: https://doi.org/10.1002/mrm.27738 [Epub ahead of print].
- 4Hoesl MAU, Kleimaier D, Hu R, et al. 23Na triple-quantum signal of in vitro human liver cells, liposomes, and nanoparticles: Cell viability assessment vs. separation of intra- and extracellular signal. J Magn Reson Imaging 2019 DOI: https://doi.org/10.1002/jmri.26666 [Epub ahead of print].
- 5Hilal SK, Maudsley AA, Ra JB, et al. In vivo NMR imaging of sodium-23 in the human head. J Comput Assist Tomogr 1985; 9: 1–7.
- 6Atkinson IC, Claiborne TC, Thulborn KR. Feasibility of 39-potassium MR imaging of a human brain at 9.4 Tesla. Magn Reson Med 2014; 71: 1819–1825.
- 7Umathum R, Rösler MB, Nagel AM. In vivo 39K MR imaging of human muscle and brain. Radiology 2013; 269: 569–576.
- 8Nagel AM, Lehmann-Horn F, Weber M-A, et al. In vivo 35Cl MR imaging in humans: A feasibility study. Radiology 2014; 271: 585–595.
- 9Fiat D, Hankiewicz J, Liu S, Trbovic S, Brint S. 17O magnetic resonance imaging of the human brain. Neurol Res 2004; 26: 803–808.
- 10Schepkin VD. Sodium MRI of glioma in animal models at ultrahigh magnetic fields. NMR Biomed 2016; 29: 175–186.
- 11Zöllner FG, Kalayciyan R, Chacon-Caldera J, Zimmer F, Schad LR. Pre-clinical functional magnetic resonance imaging. Part I: The kidney. Z Med Phys 2014; 24: 286–306.
- 12Zöllner FG, Konstandin S, Lommen J, et al. Quantitative sodium MRI of kidney. NMR Biomed 2016; 29: 197–205.
- 13Shah NJ, Worthoff WA, Langen KJ. Imaging of sodium in the brain: A brief review. NMR Biomed 2016; 29: 162–174.
- 14Petracca M, Fleysher L, Oesingmann N, Inglese M. Sodium MRI of multiple sclerosis. NMR Biomed 2016; 29: 153–161.
- 15Petracca M, Vancea RO, Fleysher L, Jonkman LE, Oesingmann N, Inglese M. Brain intra- and extracellular sodium concentration in multiple sclerosis: A 7 T MRI study. Brain 2016; 139: 795–806.
- 16Dani KA, Warach S. Metabolic imaging of ischemic stroke: The present and future. AJNR Am J Neuroradiol 2014; 35: 37–43.
- 17Constantinides C. Cardiac multinuclear imaging. In: C Constantinides, editor. Protocols and methodologies in basic science and clinical cardiac MRI. Cham, Switzerland: Springer International Publishing; 2018. p 215–236.
10.1007/978-3-319-53001-7_6 Google Scholar
- 18Guermazi A, Alizai H, Crema MD, Trattnig S, Regatte RR, Roemer FW. Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarthr Cartilage 2015; 23: 1639–1653.
- 19Thulborn KR. Quantitative sodium MR imaging: A review of its evolving role in medicine. Neuroimage 2018; 168: 250–268.
- 20Madelin G, Lee JS, Regatte RR, Jerschow A. Sodium MRI: Methods and applications. Prog Nucl Magn Reson Spectrosc 2014; 79: 14–47.
- 21Madelin G, Regatte RR. Biomedical applications of sodium MRI in vivo. J Magn Reson Imaging 2013; 38: 511–529.
- 22Konstandin S, Nagel AM. Measurement techniques for magnetic resonance imaging of fast relaxing nuclei. MAGMA 2014; 27: 5–19.
- 23Eliav U, Navon G. Sodium NMR/MRI for anisotropic systems. NMR Biomed 2016; 29: 144–152.
- 24Kemp-Harper R, Brown SP, Hughes CE, Styles P, Wimperis S. 23Na NMR methods for selective observation of sodium ions in ordered environments. Prog Nucl Magn Reson Spectrosc 1997; 30: 157.
- 25Navon G, Shinar H, Eliav U, Seo Y. Multiquantum filters and order in tissues. NMR Biomed 2001; 14: 112–132.
- 26Gordji-Nejad A, Mollenhoff K, Oros-Peusquens AM, Pillai DR, Shah NJ. Characterizing cerebral oxygen metabolism employing oxygen-17 MRI/MRS at high fields. MAGMA 2014; 27: 81–93.
- 27Zhu XH, Chen W. In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field. Prog Nucl Magn Reson Spectrosc 2011; 59: 319–335.
- 28Gottwald E, Neubauer A, Schad L. Assessment of cellular and organ function and dysfunction using direct and derived MRI methodologies. In: CD Constantinides, ed. Tracking cellular functions by exploiting the paramagnetic properties of X-nuclei: InTech; 2016 (Open Access).
- 29An H, Ford AL, Eldeniz C, et al. Reperfusion beyond 6 hours reduces infarct probability in moderately ischemic brain tissue. Stroke 2016; 47: 99–105.
- 30Boada FE, Qian Y, Nemoto E, et al. Sodium MRI and the assessment of irreversible tissue damage during hyper-acute stroke. Transl Stroke Res 2012; 3: 236–245.
- 31Bartha R, Megyesi J, Watling C. Low-grade glioma: Correlation of short echo time 1H-MR spectroscopy with 23Na MR imaging. Am J Neuroradiol 2008; 29: 464–470.
- 32Ouwerkerk R, Bleich KB, Gillen JS, Pomper MG, Bottomley PA. Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology 2003; 227: 529–537.
- 33Eisele P, Konstandin S, Griebe M, et al. Heterogeneity of acute multiple sclerosis lesions on sodium (23Na) MRI. Mult Scler J 2016; 22: 1040–1047.
- 34Eisele P, Konstandin S, Szabo K, et al. Temporal evolution of acute multiple sclerosis lesions on serial sodium (23Na) MRI. Mult Scler Relat Disord 2019; 29: 48–54.
- 35Lesperance LM, Gray ML, Burstein D. Determination of fixed charge density in cartilage using nuclear magnetic resonance. J Orthop Res 1992; 10: 1–13.
- 36Wang C, McArdle E, Fenty M, et al. Validation of sodium magnetic resonance imaging of intervertebral disc. Spine 2010; 35: 505–510.
- 37Nagel AM, Umathum R, Rosler MB, et al. 39K and 23Na relaxation times and MRI of rat head at 21.1 T. NMR Biomed 2016; 29: 759–766.
- 38Weber M-A, Nagel AM, Marschar AM, et al. 7-T 35Cl and 23Na MR imaging for detection of mutation-dependent alterations in muscular edema and fat fraction with sodium and chloride concentrations in muscular periodic paralyses. Radiology 2016; 280: 848–859.
- 39Rooney WD, Springer CS. A comprehensive approach to the analysis and interpretation of the resonances of spins 3/2 from living systems. NMR Biomed 1991; 4: 209–226.
- 40Lakshmanan K, Brown R, Madelin G, Qian Y, Boada F, Wiggins GC. An eight-channel sodium/proton coil for brain MRI at 3 T. NMR Biomed 2018; 31: e3867.
- 41Wiggins GC, Brown R, Lakshmanan K. High-performance radiofrequency coils for 23Na MRI: Brain and musculoskeletal applications. NMR Biomed 2016; 29: 96–106.
- 42Malzacher M, Chacon-Caldera J, Paschke N, Schad LR. Feasibility study of a double resonant 8-channel 1H/ 8-channel 23Na receive-only head coil at 3 Tesla. Magn Reson Imaging 2019 DOI: j.mri.2019.03.013 [Epub ahead of print].
- 43Graessl A, Ruehle A, Renz W, et al. Sodium imaging of the heart at 7T: Design, evaluation and application of a four-channel transmit/receive surface coil array. J Cardiovasc Magn Reson 2013; 15: W14.
- 44Ouwerkerk R, Bottomley PA, Solaiyappan M, et al. Tissue sodium concentration in myocardial infarction in humans: A quantitative 23Na MR imaging study. Radiology 2008; 248: 88–96.
- 45Bangerter NK, Kaggie JD, Taylor MD, Hadley JR. Sodium MRI radiofrequency coils for body imaging. NMR Biomed 2016; 29: 107–118.
- 46Benkhedah N, Hoffmann SH, Biller A, Nagel AM. Evaluation of adaptive combination of 30-channel head receive coil array data in 23Na MR imaging. Magn Reson Med 2016; 75: 527–536.
- 47Brown R, Lakshmanan K, Madelin G, et al. A flexible nested sodium and proton coil array with wideband matching for knee cartilage MRI at 3T. Magn Reson Med 2016; 76: 1325–1334.
- 48Brown R, Madelin G, Lattanzi R, et al. Design of a nested eight-channel sodium and four-channel proton coil for 7T knee imaging. Magn Reson Med 2013; 70: 259–268.
- 49Malzacher M, Kalayciyan R, Konstandin S, Haneder S, Schad LR. Sodium-23 MRI of whole spine at 3 Tesla using a 5-channel receive-only phased-array and a whole-body transmit resonator. Z Med Phys 2016; 26: 95–100.
- 50Shajan G, Mirkes C, Buckenmaier K, Hoffmann J, Pohmann R, Scheffler K. Three-layered radio frequency coil arrangement for sodium MRI of the human brain at 9.4 Tesla. Magn Reson Med 2016; 75: 906–916.
- 51Wenz D, Kuehne A, Huelnhagen T, et al. Millimeter spatial resolution in vivo sodium MRI of the human eye at 7 T using a dedicated radiofrequency transceiver array. Magn Reson Med 2018; 80: 672–684.
- 52Malzacher M, Chacon-Caldera J, Paschke N, Schad LR. Feasibility study of a double resonant (1H/23Na) abdominal RF setup at 3T. Z Med Phys 2019 doi: https://doi.org/10.1016/j.zemedi.2018.12.004 [Epub ahead of print].
- 53Hoffmann SH, Begovatz P, Nagel AM, et al. A measurement setup for direct 17O MRI at 7 T. Magn Reson Med 2011; 66: 1109–1115.
- 54Malzacher M, Hu R, Chacon-Caldera J, Schad LR. Reducing signal-to-noise ratio degradation due to coil coupling in a receiver array for 35Cl MRI at 9.4 T: A comparison of matching and decoupling strategies. Concepts Magn Reson B Magn Reson Eng 2018; 48: e21383.
10.1002/cmr.b.21383 Google Scholar
- 55Kaggie JD, Hadley JR, Badal J, et al. A 3 T sodium and proton composite array breast coil. Magn Reson Med 2014; 71: 2231–2242.
- 56Kaggie JD, Sapkota N, Thapa B, et al. Synchronous radial 1H and 23Na dual-nuclear MRI on a clinical MRI system, equipped with a broadband transmit channel. Concepts Magn Reson B Magn Reson Eng 2016; 46: 191–201.
- 57Lee S, Hilal S, Cho Z. A multinuclear magnetic resonance imaging technique-simultaneous proton and sodium imaging. Magn Reson Imaging 1986; 4: 343–350.
- 58Boada FE, Christensen JD, Huang-Hellinger FR, Reese TG, Thulborn KR. Quantitative in vivo tissue sodium concentration maps: The effects of biexponential relaxation. Magn Reson Med 1994; 32: 219–223.
- 59Romanzetti S, Mirkes CC, Fiege DP, Celik A, Felder J, Shah NJ. Mapping tissue sodium concentration in the human brain: A comparison of MR sequences at 9.4Tesla. Neuroimage 2014; 96: 44–53.
- 60Rahmer J, Bornert P, Groen J, Bos C. Three-dimensional radial ultrashort echo-time imaging with T2 adapted sampling. Magn Reson Med 2006; 55: 1075–1082.
- 61Nielles-Vallespin S, Weber M-A, Bock M, et al. 3D radial projection technique with ultrashort echo times for sodium MRI: Clinical applications in human brain and skeletal muscle. Magn Reson Med 2007; 57: 74–81.
- 62Konstandin S, Nagel AM, Heiler PM, Schad LR. Two-dimensional radial acquisition technique with density adaption in sodium MRI. Magn Reson Med 2011; 65: 1090–1096.
- 63Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR. Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 2009; 62: 1565–1573.
- 64Boada FE, Gillen JS, Shen GX, Chang SY, Thulborn KR. Fast three dimensional sodium imaging. Magn Reson Med 1997; 37: 706–715.
- 65Boada FE, Shen GX, Chang SY, Thulborn KR. Spectrally weighted twisted projection imaging: Reducing T2 signal attenuation effects in fast three-dimensional sodium imaging. Magn Reson Med 1997; 38: 1022–1028.
- 66Romanzetti S, Halse M, Kaffanke J, Zilles K, Balcom BJ, Shah NJ. A comparison of three SPRITE techniques for the quantitative 3D imaging of the 23Na spin density on a 4T whole-body machine. J Magn Reson 2006; 179: 64–72.
- 67Gurney PT, Hargreaves BA, Nishimura DG. Design and analysis of a practical 3D cones trajectory. Magn Reson Med 2006; 55: 575–582.
- 68Madelin G, Chang G, Otazo R, Jerschow A, Regatte RR. Compressed sensing sodium MRI of cartilage at 7T: Preliminary study. J Magn Reson 2012; 214: 360–365.
- 69Qian Y, Stenger VA, Boada FE. Parallel imaging with 3D TPI trajectory: SNR and acceleration benefits. Magn Reson Imaging 2009; 27: 656–663.
- 70Lu A, Atkinson IC, Claiborne TC, Damen FC, Thulborn KR. Quantitative sodium imaging with a flexible twisted projection pulse sequence. Magn Reson Med 2010; 63: 1583–1593.
- 71Pipe JG, Zwart NR, Aboussouan EA, Robison RK, Devaraj A, Johnson KO. A new design and rationale for 3D orthogonally oversampled k-space trajectories. Magn Reson Med 2011; 66: 1303–1311.
- 72Qian Y, Boada FE. Acquisition-weighted stack of spirals for fast high-resolution three-dimensional ultra-short echo time MR imaging. Magn Reson Med 2008; 60: 135–145.
- 73Allen SP, Morrell GR, Peterson B, et al. Phase-sensitive sodium B1 mapping. Magn Reson Med 2011; 65: 1125–1130.
- 74Mirkes CC, Hoffmann J, Shajan G, Pohmann R, Scheffler K. High-resolution quantitative sodium imaging at 9.4 Tesla. Magn Reson Med 2015; 73: 342–351.
- 75Schneider E, Glover G. Rapid in vivo proton shimming. Magn Reson Med 1991; 18: 335–347.
- 76Noll DC, Meyer CH, Pauly JM, Nishimura DG, Macovski A. A homogeneity correction method for magnetic resonance imaging with time-varying gradients. IEEE Trans Med Imaging 1991; 10: 629–637.
- 77Lommen J, Konstandin S, Kramer P, Schad LR. Enhancing the quantification of tissue sodium content by MRI: Time-efficient sodium B1 mapping at clinical field strengths. NMR Biomed 2016; 29: 129–136.
- 78Pohmann R, Scheffler K. A theoretical and experimental comparison of different techniques for B1~mapping at very high fields. NMR Biomed 2013; 26: 265–275.
- 79Insko EK, Bolinger L. Mapping of the radiofrequency field. J Magn Reson Ser A 1993; 103: 82–85.
- 80Morrell GR. A phase-sensitive method of flip angle mapping. Magn Reson Med 2008; 60: 889–894.
- 81Morrell GR, Schabel MC. An analysis of the accuracy of magnetic resonance flip angle measurement methods. Phys Med Biol 2010; 55: 6157–6157.
- 82Yarnykh VL. Actual flip-angle imaging in the pulsed steady state: A method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 2007; 57: 192–200.
- 83Sacolick LI, Wiesinger F, Hancu I, Vogel MW. B1 mapping by Bloch-Siegert shift. Magn Reson Med 2010; 63: 1315–1322.
- 84Linz P, Santoro D, Renz W, et al. Skin sodium measured with 23Na MRI at 7.0 T. NMR Biomed 2015; 28: 54–62.
- 85Ouwerkerk R, Jacobs MA, Macura KJ, et al. Elevated tissue sodium concentration in malignant breast lesions detected with non-invasive 23Na MRI. Breast Cancer Res Treat 2007; 106: 151–160.
- 86Hoult DI. The principle of reciprocity in signal strength calculations — A mathematical guide. Concepts Magn Reson 2000; 12: 173–187.
- 87Brey WW, Narayana PA. Correction for intensity falloff in surface coil magnetic resonance imaging. Med Phys 1988; 15: 241–245.
- 88Maril N, Rosen Y, Reynolds GH, Ivanishev A, Ngo L, Lenkinski RE. Sodium MRI of the human kidney at 3 Tesla. Magn Reson Med 2006; 56: 1229–1234.
- 89Constantinides CD, Kraitchman DL, O'Brien KO, Boada FE, Gillen J, Bottomley PA. Noninvasive quantification of total sodium concentrations in acute reperfused myocardial infarction using 23Na MRI. Magn Reson Med 2001; 46: 1144–1151.
- 90Hausmann D, Konstandin S, Wetterling F, et al. Apparent diffusion coefficient and sodium concentration measurements in human prostate tissue via hydrogen-1 and sodium-23 magnetic resonance imaging in a clinical setting at 3 T. Invest Radiol 2012; 47: 677–682.
- 91Axel L, Costantini J, Listerud J. Intensity correction in surface-coil MR imaging. Am J Roentgenol 1987; 148: 418–420.
- 92Murakami JW, Hayes CE, Weinberger E. Intensity correction of phased-array surface coil images. Magn Reson Med 1996; 35: 585–590.
- 93Lin F-H, Chen Y-J, Belliveau JW, Wald LL. A wavelet-based approximation of surface coil sensitivity profiles for correction of image intensity inhomogeneity and parallel imaging reconstruction. Hum Brain Mapp 2003; 19: 96–111.
- 94Gai ND, Rochitte C, Nacif MS, Bluemke DA. Optimized three-dimensional sodium imaging of the human heart on a clinical 3T scanner. Magn Reson Med 2015; 73: 623–632.
- 95Lee JS, Xia D, Madelin G, Regatte RR. Sodium inversion recovery MRI on the knee joint at 7 T with an optimal control pulse. J Magn Reson 2016; 262: 33–41.
- 96Henzler T, Konstandin S, Schmid-Bindert G, et al. Imaging of tumor viability in lung cancer: Initial results using 23Na-MRI. Rofo 2012; 184: 340–344.
- 97Pabst T, Sandstede J, Beer M, et al. Optimization of ECG-triggered 3D 23Na MRI of the human heart. Magn Reson Med 2001; 45: 164–166.
- 98Sandstede JJ, Hillenbrand H, Beer M, et al. Time course of 23Na signal intensity after myocardial infarction in humans. Magn Reson Med 2004; 52: 545–551.
- 99Hussain MS, Stobbe RW, Bhagat YA, et al. Sodium imaging intensity increases with time after human ischemic stroke. Ann Neurol 2009; 66: 55–62.
- 100Neumaier-Probst E, Konstandin S, Ssozi J, et al. A double-tuned 1H/23Na resonator allows 1H-guided 23Na-MRI in ischemic stroke patients in one session. Int J Stroke 2015; 10(Suppl A100): 56–61.
- 101Biller A, Badde S, Nagel A, et al. Improved brain tumor classification by sodium MR imaging: Prediction of IDH mutation status and tumor progression. AJNR Am J Neuroradiol 2016; 37: 66–73.
- 102Nagel AM, Bock M, Hartmann C, et al. The potential of relaxation-weighted sodium magnetic resonance imaging as demonstrated on brain tumors. Invest Radiol 2011; 46: 539–547.
- 103Marik W, Nemec SF, Zbyn S, et al. Changes in cartilage and tendon composition of patients with type I diabetes mellitus: Identification by quantitative sodium magnetic resonance imaging at 7 T. Invest Radiol 2016; 51: 266–272.
- 104Zaaraoui W, Konstandin S, Audoin B, et al. Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: A cross-sectional 23Na MR imaging study. Radiology 2012; 264: 859–867.
- 105Constantinides CD, Gillen JS, Boada FE, Pomper MG, Bottomley PA. Human skeletal muscle: Sodium MR imaging and quantification—Potential applications in exercise and disease. Radiology 2000; 216: 559–568.
- 106Paschke NK, Neumann W, Uhrig T, et al. Influence of gadolinium-based contrast agents on tissue sodium quantification in sodium magnetic resonance imaging. Invest Radiol 2018; 53: 555–562.
- 107Schepkin VD, Neubauer A, Nagel AM, Budinger TF. Comparison of potassium and sodium binding in vivo and in agarose samples using TQTPPI pulse sequence. J Magn Reson 2017; 277: 162–168.
- 108Insko EK, Clayton DB, Elliott MA. In vivo sodium MR imaging of the intervertebral disk at 4 T. Acad Radiol 2002; 9: 800–804.
- 109Niesporek SC, Hoffmann SH, Berger MC, et al. Partial volume correction for in vivo 23Na-MRI data of the human brain. Neuroimage 2015; 112: 353–363.
- 110Stobbe RW, Beaulieu C. Calculating potential error in sodium MRI with respect to the analysis of small objects. Magn Reson Med 2018; 79: 2968–2977.
- 111Nagel AM, Amarteifio E, Lehmann-Horn F, et al. 3 Tesla sodium inversion recovery magnetic resonance imaging allows for improved visualization of intracellular sodium content changes in muscular channelopathies. Invest Radiol 2011; 46: 759–766.
- 112Madelin G, Xia D, Brown R, et al. Longitudinal study of sodium MRI of articular cartilage in patients with knee osteoarthritis: Initial experience with 16-month follow-up. Eur Radiol 2018; 28: 133–142.
- 113Qian Y, Panigrahy A, Laymon CM, et al. Short-T2 imaging for quantifying concentration of sodium (23Na) of bi-exponential T2 relaxation. Magn Reson Med 2015; 74: 162–174.
- 114Gilles A, Nagel AM, Madelin G. Multipulse sodium magnetic resonance imaging for multicompartment quantification: Proof-of-concept. Sci Rep 2017; 7: 17435.
- 115Madelin G, Kline R, Walvick R, Regatte RR. A method for estimating intracellular sodium concentration and extracellular volume fraction in brain in vivo using sodium magnetic resonance imaging. Sci Rep 2014; 4: 4763.
- 116Madelin G, Poidevin F, Makrymallis A, Regatte RR. Classification of sodium MRI data of cartilage using machine learning. Magn Reson Med 2015; 74: 1435–1448.
- 117Nunes Neto LP, Madelin G, Sood TP, et al. Quantitative sodium imaging and gliomas: A feasibility study. Neuroradiology 2018; 60: 795–802.
- 118Thulborn K, Lui E, Guntin J, et al. Quantitative sodium MRI of the human brain at 9.4 T provides assessment of tissue sodium concentration and cell volume fraction during normal aging. NMR Biomed 2016; 29: 137–143.
- 119Pekar J, Renshaw PF, Leigh JS. Selective detection of intracellular sodium by coherence-transfer NMR. J Magn Reson (1969) 1987; 72: 159–161.
- 120Fleysher L, Oesingmann N, Brown R, Sodickson DK, Wiggins GC, Inglese M. Noninvasive quantification of intracellular sodium in human brain using ultrahigh-field MRI. NMR Biomed 2013; 26: 9–19.
- 121Hubbard PS. Nonexponential nuclear magnetic relaxation by quadrupole interactions. J Chem Phys 1970; 53: 985–987.
- 122Jaccard G, Wimperis S, Bodenhausen G. Multiple-quantum NMR spectroscopy of S=3/2 spins in isotropic phase: A new probe for multiexponential relaxation. J Chem Phys 1986; 85: 6282–6293.
- 123Pekar J, Leigh JS. Detection of biexponential relaxation in sodium-23 facilitated by double-quantum filtering. J Magn Reson (1969) 1986; 69: 582–584.
- 124van der Maarel JRC. Thermal relaxation and coherence dynamics of spin 3/2. I. Static and fluctuating quadrupolar interactions in the multipole basis. Concepts Magn Reson 2003; 19A: 97–116.
10.1002/cmr.a.10087 Google Scholar
- 125Bodenhausen G, Kogler H, Ernst RR. Selection of coherence-transfer pathways in NMR pulse experiments. J Magn Reson (1969) 1984; 58: 370–388.
- 126Wimperis S, Cole P, Styles P. Triple-quantum-filtration NMR imaging of 200 mM sodium at 1.9 Tesla. J Magn Reson (1969) 1992; 98: 628–636.
- 127Tsang A, Stobbe RW, Beaulieu C. Triple-quantum-filtered sodium imaging of the human brain at 4.7 T. Magn Reson Med 2012; 67: 1633–1643.
- 128Kemp-Harper R, Brown SP, Styles P, Wimperis S. In vivo NMR of sodium ions in ordered environments. J Magn Reson 1994; 105: 199–203.
- 129Gast LV, Gerhalter T, Hensel B, Uder M, Nagel AM. Double quantum filtered 23Na MRI with magic angle excitation of human skeletal muscle in the presence of B0 and B1 inhomogeneities. NMR Biomed 2018: e4010.
- 130Matthies C, Nagel AM, Schad LR, Bachert P. Reduction of B0 inhomogeneity effects in triple-quantum-filtered sodium imaging. J Magn Reson 2010; 202: 239–244.
- 131Tanase C, Boada FE. Triple-quantum-filtered imaging of sodium in presence of B0 inhomogeneities. J Magn Reson 2005; 174: 270–278.
- 132Fleysher L, Oesingmann N, Inglese M. B(0) inhomogeneity-insensitive triple-quantum-filtered sodium imaging using a 12-step phase-cycling scheme. NMR Biomed 2010; 23: 1191–1198.
- 133Fiege DP, Romanzetti S, Tse DH, et al. B0 insensitive multiple-quantum resolved sodium imaging using a phase-rotation scheme. J Magn Reson 2013; 228: 32–36.
- 134Tsang A, Stobbe RW, Beaulieu C. Evaluation of B0-inhomogeneity correction for triple-quantum-filtered sodium MRI of the human brain at 4.7 T. J Magn Reson 2013; 230: 134–144.
- 135Mirkes C, Shajan G, Bause J, Buckenmaier K, Hoffmann J, Scheffler K. Triple-quantum-filtered sodium imaging at 9.4 Tesla. Magn Reson Med 2016; 75: 1278–1289.
- 136Rösler MB, Nagel AM, Umathum R, Bachert P, Benkhedah N. In vivo observation of quadrupolar splitting in 39K magnetic resonance spectroscopy of human muscle tissue. NMR Biomed 2016; 29: 451–457.
- 137Stobbe RW, Beaulieu C. Residual quadrupole interaction in brain and its effect on quantitative sodium imaging. NMR Biomed 2016; 29: 119–128.
- 138Tsang A, Stobbe RW, Beaulieu C. In vivo double quantum filtered sodium magnetic resonance imaging of human brain. Magn Reson Med 2015; 73: 497–504.
- 139Borthakur A, Hancu I, Boada FE, Shen GX, Shapiro EM, Reddy R. In vivo triple quantum filtered twisted projection sodium MRI of human articular cartilage. J Magn Reson 1999; 141: 286–290.
- 140LaVerde G, Nemoto E, Jungreis CA, Tanase C, Boada FE. Serial triple quantum sodium MRI during non-human primate focal brain ischemia. Magn Reson Med 2007; 57: 201–205.
- 141Fiege DP, Romanzetti S, Mirkes CC, Brenner D, Shah NJ. Simultaneous single-quantum and triple-quantum-filtered MRI of 23Na (SISTINA). Magn Reson Med 2013; 69: 1691–1696.
- 142Worthoff WA, Shymanskaya A, Shah NJ. Relaxometry and quantification in simultaneously acquired single and triple quantum filtered sodium MRI. Magn Reson Med 2019; 81: 303–315.
- 143Elabyad IA, Kalayciyan R, Shanbhag NC, Schad LR. First in vivo potassium-39 (39K) MRI at 9.4 T using conventional copper radio frequency surface coil cooled to 77 K. IEEE Trans Biomed Eng 2014; 61: 334–345.
- 144Fieno DS, Kim RJ, Rehwald WG, Judd RM. Physiological basis for potassium (39K) magnetic resonance imaging of the heart. Circ Res 1999; 84: 913–920.
- 145Parish TB, Fieno DS, Fitzgerald SW, Judd RM. Theoretical basis for sodium and potassium MRI of the human heart at 1.5 T. Magn Reson Med 1997; 38: 653–661.
- 146Baier S, Krämer P, Grudzenski S, Fatar M, Kirsch S, Schad LR. Chlorine and sodium chemical shift imaging during acute stroke in a rat model at 9.4 Tesla. Magn Reson Mater Phys Biol Med 2014; 27: 71–79.
- 147Kirsch S, Augath M, Seiffge D, Schilling L, Schad LR. In vivo chlorine-35, sodium-23 and proton magnetic resonance imaging of the rat brain. NMR Biomed 2010; 23: 592–600.
- 148Niesporek SC, Umathum R, Fiedler TM, Bachert P, Ladd ME, Nagel AM. Improved T2* determination in 23Na, 35Cl, and 17O MRI using iterative partial volume correction based on 1H MRI segmentation. Magn Reson Mater Phys Biol Med 2017; 30: 519–536.
- 149Borowiak R, Groebner J, Haas M, Hennig J, Bock M. Direct cerebral and cardiac 17O-MRI at 3 Tesla: Initial results at natural abundance. MAGMA 2014; 27: 95–99.
- 150Hoffmann SH, Radbruch A, Bock M, Semmler W, Nagel AM. Direct 17O MRI with partial volume correction: First experiences in a glioblastoma patient. MAGMA 2014; 27: 579–587.
- 151Kurzhunov D, Borowiak R, Hass H, et al. Quantification of oxygen metabolic rates in human brain with dynamic 17O MRI: Profile likelihood analysis. Magn Reson Med 2017; 78: 1157–1167.
- 152Kurzhunov D, Borowiak R, Reisert M, Krafft AJ, Özen AC, Bock M. 3D CMRO2 mapping in human brain with direct 17O MRI: Comparison of conventional and proton-constrained reconstructions. Neuroimage 2017; 155: 612–624.
- 153Meyerspeer M, Magill AW, Kuehne A, Gruetter R, Moser E, Schmid AI. Simultaneous and interleaved acquisition of NMR signals from different nuclei with a clinical MRI scanner. Magn Reson Med 2016; 76: 1636–1641.
- 154de Bruin PW, Koken P, Versluis MJ, et al. Time-efficient interleaved human 23Na and 1H data acquisition at 7 T. NMR Biomed 2015; 28: 1228–1235.
- 155Henningsson M, Mens G, Koken P, Smink J, Botnar RM. A new framework for interleaved scanning in cardiovascular MR: Application to image-based respiratory motion correction in coronary MR angiography. Magn Reson Med 2015; 73: 692–696.
- 156Gnahm C, Bock M, Bachert P, Semmler W, Behl NG, Nagel AM. Iterative 3D projection reconstruction of 23Na data with an 1H MRI constraint. Magn Reson Med 2014; 71: 1720–1732.
- 157Gnahm C, Nagel AM. Anatomically weighted second-order total variation reconstruction of 23Na MRI using prior information from 1H MRI. Neuroimage 2015; 105: 452–461.
- 158Block KT, Uecker M, Frahm J. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med 2007; 57: 1086–1098.
- 159Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58: 1182–1195.
- 160Constantinides CD, Weiss RG, Lee R, Bolar D, Bottomley PA. Restoration of low resolution metabolic images with a priori anatomic information: 23Na MRI in myocardial infarction. Magn Reson Imaging 2000; 18: 461–471.
- 161Weingärtner S, Wetterling F, Konstandin S, Fatar M, Neumaier-Probst E, Schad LR. Scan time reduction in 23Na-Magnetic Resonance Imaging using the chemical shift imaging sequence: Evaluation of an iterative reconstruction method. Z Med Phys 2015; 25: 275–286.
- 162Lotan E, Jain R, Razavian N, Fatterpekar GM, Lui YW. State of the art: Machine learning applications in glioma imaging. AJR Am J Roentgenol 2019; 212: 26–37.
- 163LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436–444.
- 164Wang S, Su Z, Ying L, et al. Accelerating magnetic resonance imaging via deep learning. IEEE Vol 16; 2016. p 514–517.
- 165Neubauer A, Nies C, Schepkin VD, et al. Tracking protein function with sodium multi quantum spectroscopy in a 3D-tissue culture based on microcavity arrays. Sci Rep 2017; 7: 3943.
- 166Ouwerkerk R, Weiss RG, Bottomley PA. Measuring human cardiac tissue sodium concentrations using surface coils, adiabatic excitation, and twisted projection imaging with minimal T2 losses. J Magn Reson Imaging 2005; 21: 546–555.
- 167Haneder S, Konstandin S, Morelli JN, et al. Quantitative and qualitative 23Na MR imaging of the human kidneys at 3 T: Before and after a water load. Radiology 2011; 260: 857–865.
- 168Jacobs MA, Ouwerkerk R, Kamel I, Bottomley PA, Bluemke DA, Kim HS. Proton, diffusion-weighted imaging, and sodium (23Na) MRI of uterine leiomyomata after MR-guided high-intensity focused ultrasound: A preliminary study. J Magn Reson Imaging 2009; 29: 649–656.
- 169James JR, Panda A, Lin C, Dydak U, Dale BM, Bansal N. In vivo sodium MR imaging of the abdomen at 3T. Abdom Imaging 2015; 40: 2272–2280.
- 170Crescenzi R, Marton A, Donahue PMC, et al. Tissue sodium content is elevated in the skin and subcutaneous adipose tissue in women with lipedema. Obesity (Silver Spring) 2018; 26: 310–317.
- 171Schneider MP, Raff U, Kopp C, et al. Skin sodium concentration correlates with left ventricular hypertrophy in CKD. J Am Soc Nephrol 2017; 28: 1867–1876.
- 172Wang L, Wu Y, Chang G, et al. Rapid isotropic 3D-sodium MRI of the knee joint in vivo at 7T. J Magn Reson Imaging 2009; 30: 606–614.
- 173Grist JT, Riemer F, McLean MA, et al. Imaging intralesional heterogeneity of sodium concentration in multiple sclerosis: Initial evidence from 23Na-MRI. J Neurol Sci 2018; 387: 111–114.
- 174Inglese M, Madelin G, Oesingmann N, et al. Brain tissue sodium concentration in multiple sclerosis: A sodium imaging study at 3 Tesla. Brain 2010; 133(Pt 3): 847–857.
- 175Ridley B, Marchi A, Wirsich J, et al. Brain sodium MRI in human epilepsy: Disturbances of ionic homeostasis reflect the organization of pathological regions. Neuroimage 2017; 157: 173–183.