Interleaved gradient echo planar (IGEPI) and phase contrast CINE-PC flow measurements in the renal artery
Corresponding Author
Michael Bock PhD
Forschungsschwerpunkt Radiologische Diagnostik und Therapie, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
Forschungsschwerpunkt Radiologische Diagnostik und Therapie, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, D-69120 Heidelberg, GermanySearch for more papers by this authorStefan O. Schoenberg MD
Forschungsschwerpunkt Radiologische Diagnostik und Therapie, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
Search for more papers by this authorLothar R. Schad PhD
Forschungsschwerpunkt Radiologische Diagnostik und Therapie, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
Search for more papers by this authorMichael V. Knopp MD
Forschungsschwerpunkt Radiologische Diagnostik und Therapie, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
Search for more papers by this authorMarco Essig MD
Forschungsschwerpunkt Radiologische Diagnostik und Therapie, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
Search for more papers by this authorGerhard van Kaick MD
Forschungsschwerpunkt Radiologische Diagnostik und Therapie, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
Search for more papers by this authorCorresponding Author
Michael Bock PhD
Forschungsschwerpunkt Radiologische Diagnostik und Therapie, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
Forschungsschwerpunkt Radiologische Diagnostik und Therapie, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, D-69120 Heidelberg, GermanySearch for more papers by this authorStefan O. Schoenberg MD
Forschungsschwerpunkt Radiologische Diagnostik und Therapie, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
Search for more papers by this authorLothar R. Schad PhD
Forschungsschwerpunkt Radiologische Diagnostik und Therapie, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
Search for more papers by this authorMichael V. Knopp MD
Forschungsschwerpunkt Radiologische Diagnostik und Therapie, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
Search for more papers by this authorMarco Essig MD
Forschungsschwerpunkt Radiologische Diagnostik und Therapie, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
Search for more papers by this authorGerhard van Kaick MD
Forschungsschwerpunkt Radiologische Diagnostik und Therapie, Deutsches Krebsforschungszentrum Heidelberg, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
Search for more papers by this authorAbstract
ECG-gated phase contrast (CINE-PC) flow measurements in the renal artery help to differentiate between low- and high-grade stenoses. Because conventional CINE-PC acquisitions with high temporal resolution require acquisition times of several minutes, respiratory motion results in a systematic overestimation of renal artery flow. With the use of an interleaved gradient echo-planar technique (IGEPI), total measurement times can be shortened to about 30 seconds, while a high spatial and temporal resolution is maintained. In this study, an IGEPI CINE-PC flow measurement pulse sequence with 16 gradient echoes was compared with a non-breathheld conventional CINE-PC technique. Flow-time curves were measured in volunteers and in patients with suspected renal artery stenosis. With IGEPI CINE-PC, mean flow velocity, vessel cross-sectional area, and mean blood flow were substantially lower by 9% to 25%. Contrast-enhanced 3D MR angiography was used to compare stenosis grading based on flow-time curve patterns with morphologic grading. With IGEPI CINE-PC, all high-grade stenoses (n = 5) were detected, whereas only 66% (n = 3) were found with conventional CINE-PC.
References
- 1 Hillman BJ, Ovitt TW, Capp MP, Fisher HD, Frost MM, Nudelman S. Renal digital subtraction angiography: 100 cases. Radiology 1982; 145: 643–646.
- 2 Blaufox MD, Middleton ML, Bongiovanni J, Davis BR. Cost efficacy of the diagnosis and therapy of renovascular hypertension. J Nucl Med 1996; 37: 171–177.
- 3 Berland LL, Koslin DB, Routh WD, Keller FS. Renal artery stenosis: prospective evaluation of diagnosis with color duplex US compared with angiography. Radiology 1990; 174: 421–423.
- 4 Desberg AL, Paushter DM, Lammert GK, et al. Renal artery stenosis: evaluation with color Doppler flow imaging. Radiology 1990; 177: 749–753.
- 5 Kliewer MA, Tupler RH, Carroll BA, et al. Renal artery stenosis: analysis of doppler waveform parameters and tardus-parvus pattern. Radiology 1993; 189: 779–787.
- 6 Halpern EJ, Needleman L, Nack TL, East SA %. Renal artery stenosis: should we study the main renal artery or segmental vessels? Radiology 1995; 195: 799–804.
- 7 Nayler GL, Firmin DN, Longmore DB. Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr 1986; 10: 715–722.
- 8 Lundin J, Cooper TG, Meyer RA, Potchen EJ. Measurement of total and unilateral renal blood flow by oblique-angle velocity-encoded 2D-CINE magnetic resonance angiography. Magn Reson Imaging 1993; 11: 51–59.
- 9 Debatin JF, Ting RH, Wegmüller H, et al. Renal artery blood flow: quantitation with phase-contrast MR imaging with and without breath holding. Radiology 1994; 190: 371–378.
- 10 Schoenberg SO, Knopp MV, Bock M, et al. Renal artery stenosis: grading of hemodynamic changes with cine phase-contrast MR blood flow measurements. Radiology 1997; 203: 45–53.
- 11 Schoenberg SO, Just A, Bock M, et al. Noninvasive analysis of renal artery blood flow dynamics with MR cine phase-contrast flow measurements. Am J Physiol 1997; 272: H2477–H2484.
- 12 Thomsen C, Cortsen M, Sondergaard L, Henriksen O, Stahlberg F. A segmented k-space velocity mapping protocol for quantification of renal artery blood flow during breath-holding. J Magn Reson Imaging 1995; 5(4): 393–401.
- 13 McKinnon GC. Ultrafast interleaved gradient-echo-planar imaging on a standard scanner. Magn Reson Med 1993; 30: 609–616.
- 14 McKinnon GC, Debatin JF, Wetter DR, von Schulthess GK. Interleaved echo planar flow quantification. Magn Reson Med 1994; 32: 263–267.
- 15 Prince MR, Narasimham DL, Stanley JC, et. al. Breath-hold gadolinium-enhanced MR angiography of the abdominal aorta and its major branches. Radiology 1995; 197: 785–792.
- 16 Manabe A. Multi-angle projection shim (MAPshim): in vivo shim adjustment up to 2nd order with 0.2 second sequence time. In: Book of abstracts: Second meeting of the Society of Magnetic Resonance. San Francisco, California, 1994; 765.
- 17 Felblinger J, Lehmann C, Boesch C. Electrocardiogram acquisition during MR examinations for patient monitoring and sequence triggering. Magn Reson Med 1994; 32: 523–529.
- 18
Felblinger J,
Debatin JF,
Boesch C,
Gruetter R,
McKinnon GC.
Synchronization device for electrocardiography-gated echo-planar imaging.
Radiology
1995;
1: 311–313.
10.1148/radiology.197.1.7568844 Google Scholar
- 19 Stavros AT, Parker SH, Yakes WF, et al. Segmental stenosis of the renal artery: pattern recognition of tardus and parvus abnormalities with duplex sonography. Radiology 1992; 184: 487–492.
- 20 Wong EC. Shim insensitive phase correction for EPI using a two echo reference scan. In: Book of abstracts: Eleventh Annual Scientific Meeting of the Society of Magnetic Resonance in Medicine. Berlin, Germany, 1992; 4514.
- 21 Feinberg DA, Oshio K. Phase errors in multi-shot echo planar imaging. Magn Reson Med 1994; 32: 535–539.
- 22 Mugler JP, Brookeman JR. Off-resonance image artifacts in interleaved-EPI and GRASE pulse sequences. Magn Reson Med 1996; 36: 306–313.
- 23 Hofman MBM, Kouwenhoven M, Sprenger M, van Rossum AC, Valk J, Westerhof N. Nontriggered magnetic resonance velocity measurement of the time-average of pulsatile velocity. Magn Reson Med 1993; 29: 648–655.
- 24 Chomdej B, Bell PD, Navar LG. Renal haemodynamic and autoregulatory responses to acute hypercalcemia. Am J Physiol 1977; 232: F490–F496.
- 25 Dorward PK, Burke SL, Janig W, Cassel J. Reflex responses to baroreceptor, chemoreceptor and nociceptor inputs in a single renal sympathetic neurones in the rabbit and the effects of anaesthesia on them. J Auton Nerv Syst 1987; 18: 39–54.
- 26 Gross R, Kirchheim H. Effects of bilateral carotid and auditory stimulation on renal blood flow and sympathetic nerve activity in the conscious dog. Pflügers Arch 1980; 383: 233–239.
- 27 Lenz GW, Haacke EM, White RD. Retrospective cardiac gating: A review of technical aspects and future directions. Magn Reson Imaging 1989; 7: 445–455.
- 28 Sondergaard L, Stahlberg F, Thomsen C, et al. Comparison between retrospective gating and ECG triggering in magnetic resonance velocity mapping. Magn Reson Imaging 1993; 11(4): 533–537.