The ultrastructure of malpighian tubules and the chemical composition of the cocoon of Aeolothrips intermedius Bagnall (Thysanoptera)
Barbara Conti
Department of Tree Science, Entomology and Plant Pathology “G. Scaramuzzi,” University of Pisa, Pisa 56124, Italy
Search for more papers by this authorFrancesco Berti
Novartis Vaccines Research Center, Siena 53100, Italy
Search for more papers by this authorDavid Mercati
Department of Evolutionary Biology, University of Siena, Siena 53100, Italy
Search for more papers by this authorFabiola Giusti
Department of Evolutionary Biology, University of Siena, Siena 53100, Italy
Search for more papers by this authorCorresponding Author
Romano Dallai
Department of Evolutionary Biology, University of Siena, Siena 53100, Italy
Department of Evolutionary Biology, University of Siena, Via A. Moro 2, Siena I-53100, ItalySearch for more papers by this authorBarbara Conti
Department of Tree Science, Entomology and Plant Pathology “G. Scaramuzzi,” University of Pisa, Pisa 56124, Italy
Search for more papers by this authorFrancesco Berti
Novartis Vaccines Research Center, Siena 53100, Italy
Search for more papers by this authorDavid Mercati
Department of Evolutionary Biology, University of Siena, Siena 53100, Italy
Search for more papers by this authorFabiola Giusti
Department of Evolutionary Biology, University of Siena, Siena 53100, Italy
Search for more papers by this authorCorresponding Author
Romano Dallai
Department of Evolutionary Biology, University of Siena, Siena 53100, Italy
Department of Evolutionary Biology, University of Siena, Via A. Moro 2, Siena I-53100, ItalySearch for more papers by this authorAbstract
The secretory activity of the two branched malpighian tubules (MTs) of the second-instar larva in Aeolothrips intermedius is described. MTs of adult thrips have the typical ultrastructure of excretory epithelium with apical microvilli containing long mitochondria and a rich system of basal membrane infoldings. In the second-instar larva just before pupation, the ultrastructure of MT epithelial cells is dramatically different, and there are numerous huge Golgi systems in the cytoplasm. These cells are involved in an intense secretory activity to produce an electron-dense product which is released into the MTs lumen. This secretion is extruded from the hindgut and used by the second-instar larva to build an elaborate protective cocoon for pupation. Electron-spray-ionization mass spectrometry analysis of the cocoon revealed the presence of a β-N-acetyl-glucosamine, the main component of chitin, which is also present in the cocoons of Neuroptera and some Coleoptera. J. Morphol., 2010. © 2009 Wiley-Liss, Inc.
LITERATURE CITED
- Bailey SF. 1940a. Cocoon-spinning thysanoptera. Pan-Pacific Entomol 16: 77–79.
- Bailey SF. 1940b. A review of the genus Ankothrips crawford. Pan-Pacific Entomol 16: 97–106.
- Bournier A,Lacasa A,Pivot Y. 1978. Biologie d'un thrips prédateur aeolothrips intermedius (Thysanoptera: Aeolothripidae). Entomophaga 23: 403–410.
- Bradley TJ. 1985. The excretory system: Structure and physiology. In: GA Kerkut, LI Gilbert, editors. Comprehensive Insect Physiology and Pharmacology, Vol. 4. New York: Pergamon Press. pp 421–465.
- Bradley TJ. 1998. Malpighian tubules. In: FW Harrison, M Locke, editors. Microscopic Anatomy of Invertebrates. 11B: Insecta. New York: Wiley-Liss, Inc. pp 809–829.
- Clermont Y,Ramboug A,Hermo L. 1995. Trans-Golgi network (TGN) of different cell types: Three-dimensional structural characteristics and variability. Anat Rec 242: 289–301.
- Conti B. 2009. Notes on the presence of Aeolothrips intermedius in north-western Tuscany and on its development under laboratory conditions. Bull Insect 62: 107–112.
- Dallai R,Del Bene G,Marchini D. 1991. Fine structure of the hindgut and the rectal pads of Frankliniella occidentalis (Thysanoptera: Thripidae). Redia 74: 29–36.
- Gouranton J. 1969. Observations cytochimiques et ultrastructurales sur les cristaux intranucléaires de l'intestin moyen de la larve de Tenebrio molitor L. C R Acad Sci 268: 2948–2851.
- Gouranton J,Thomas D. 1972. Présence de cristaux protéiques intranucléaires et intracytoplasmiques dans l'intestin moyen de Sympetrum depressiusculum Sel (Odonate). C R Acad Sci Ser D 724: 1843–1845.
- Gouranton J,Thomas D. 1974. Cytochemical, ultrastructural and autoradiographic study of the intranuclear crystals in the midgut cells of Gyrinus marinus grill. J Ultrastruct Res 48: 227–241.
- Griffiths G,Simons K. 1986. The trans-Golgi network: Sorting at the exit site of the Golgi complex. Science 234: 438–443.
- Griffiths G,Fuller SD,Back R,Hollinshead M,Simons K. 1989. The dynamic nature of the Golgi complex. J Cell Biol 108: 277–297.
- Huffaker CB. 1948. An improved cage for work with small insects. J Econ Entomol 41: 648–649.
- Izzo TJ,Pinent SMJ,Mound LA. 2002. Aulacothrips dictyotus (Heterothripidae), the first ectoparasitic thrips (Thysanoptera). Florida Entomol 85: 281–283.
- Karny HH. 1926. Beiträge zur Malayischen Thysanopteren-fauna. Treubia 9: 6–10.
- Kenchington W. 1969. The hatching thread of praying mantids: An unusual chitinous structure. J Morphol 129: 307–316.
- Kurdjumov NV. 1913. Synopsis der Familien nach Nymphenstadien. Poltava Trud Selisk Choz Stancii 18: 11–32.
-
LaMunyon C.
1988.
Hindgut changes preceding pupation and related cocoon structure in Chrysoperla comanche banks (Neuroptera. Chrysopidae).
Psyche
95:
203–209.
10.1155/1988/86738 Google Scholar
- Leblond CP,Clermont Y. 1952. Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the “periodic acid-fuchsin sulfurous acid” technique. Am J Anat 90: 167–216.
- Luini A,Mironov AA,Polishchuk EV,Polishchuk RS. 2008. Morphogenesis of post-Golgi transport carriers. Histochem Cell Biol 129: 153–161.
-
Maddrell SHP.
1972.
The mechanisms of insect excretory systems.
Adv Insect Physiol
8:
199–331.
10.1016/S0065-2806(08)60198-8 Google Scholar
- Maira-Litrán T,Kropec A,Abeygunawardana C,Joyce J,Mark GIII,Goldmann DA,Pier GB. 2002. Immunochemical properties of Staphylococcal poly-N-acetylglucosamine surface polysaccharide. Infect Immun 70: 4433–4440.
- Martoja R,Ballan-Dufrançais C. 1982. The ultrastructure of the digestive and excretory organs. In: RC King, H Akai, editors. Insect Ultrastructure. New York, London: Plenum Press. pp 199–268.
- Moritz G. 1997. Structure, growth and development. In: T Lewis, editor. Thrips as Crop Pests. New York: CAB International. pp 15–63.
- Nüesch H. 1987. Metamorphose bei insekten. Direkte und indirekte Entwicklung bei Apterygoten und Exxopterygoten. Zool Jahrb Anat 115: 453–487.
- Reijne A. 1920. A cocoon spinning thrips. Tidjsch voor Ent 63: 40–45.
- Rudall KM. 1963. The chitin/protein complexes of insect cuticles. Adv Insect Physiol 1: 257–313.
- Rudall KM,Kenchington W. 1971. Arthropod silks: The problem of fibrous proteins in animal tissue. Annu Rev Entomol 16: 73–96.
- Ryerse JS. 1978. Developmental changes in Malpighian tubule fluid transport. J Insect Physiol 24: 315–319.
- Santini MS,Ronderos JR. 2009. Allatotropin-like peptide in Malpighian tubules: Insect renal tubules as an autonomous endocrine organ. Gen Comp Endocrinol 160: 243–249.
- Sehnal F,Akai H. 1990. Insect silk glands: Their types, development and function, and effects of environmental factors and morphogenetic hormones on them. Int J Insect Morphol Embryol 19: 79–132.
- Silvestri F. 1904. Contribuzione alla conoscenza della metamorfosi e dei costumi della Lebia scapularis Fourc. con descrizione dell'apparato sericiparo della larva. Redia 2: 68–84.
- Smith DS,Littau VC. 1960. Cellular specialization in the excretory epithelia of an insect. Macrosteles fascifrons Stal (Homoptera). J Biophys Biochem Cytol 8: 103–133.
- Snodgrass RE. 1935. The Principles of Insect Morphology. New York: Mc Graw Hill Book Com. Inc. 667 p.
- Streng R. 1969. Chitinhaltiger Spinnfaden bei der Larve des Buchenspringrussler (Rhynchaenus fagi L.) Naturwissennschaften 56: 333–334.
-
Wigglesworth VB.
1972.
The Principles of Insect Physiology.
London:
Chapman and Hall.
827 p.
10.1007/978-94-009-5973-6 Google Scholar