Extracellular and intracellular acid-base regulation in crustaceans
Michele G. Wheatly
Department of Zoology, University of Florida, Gainesville, Florida 32611
Search for more papers by this authorRaymond P. Henry
Department of Zoology and Wildlife Science, Auburn University, Auburn, Alabama 36849-5414
Search for more papers by this authorMichele G. Wheatly
Department of Zoology, University of Florida, Gainesville, Florida 32611
Search for more papers by this authorRaymond P. Henry
Department of Zoology and Wildlife Science, Auburn University, Auburn, Alabama 36849-5414
Search for more papers by this authorAbstract
This article attempts to review mechanisms of intra- (ICF) and extracellular fluid (ECF) acid-base balance and the contribution each makes to whole animal acid-base homeostasis in an evolutionary progression of crustaceans (marine, freshwater, semi- and fully terrestrial). ICF pH (pHi) is regulated to preserve the functional integrity of enzymes involved in cell metabolism. The ECF is the intermediary between cellular acid/base production and whole animal exchange at the primary epithelia, the gills, and antennal gland. In vivo regulation of pHi is discussed under selected environmental conditions. Compensatory mechanisms include intracellular buffering and transmembrane exchange of acidic/base equivalents including primarily an Na + /H + /HCO3 −/Cl− mechanism and an Na + /H + exchanger. Acid-base values and regulation in the ECF (which may be subcompartmented in selected tissues) differ in aquatic versus terrestrial species. The latter have higher PCO2 (and lower pH) associated with reduced ventilation due to the higher O2 capacitance of air. Correspondingly they can regulate ECF pH (pHe) by respiratory control of PCO2; terrestrial species also depend upon mobilization of exoskeletal CaCO3 to buffer protons. In aquatic species the primary mechanism of acid-base regulation is via electroneutral ion exchangers (Na +/acidic equivalent; Cl −/basic equivalent) primarily at the branchial epithelium but also apparent in the renal tubule in species that produce dilute urine (hyperosmo/ionoregulators). Evidence is presented for dynamic regulation of unidirectional branchial and renal ion fluxes for purposes of acid-base regulation. Quantitatively the antennal gland typically contributes only 10% of the overall response. Stoichiometrically, whole animal acidic/basic equivalents exchanged at these epithelia originate predominantly in the ICF compartment (50--95%). Future perspectives emphasize the need to better understand how pH compensation or in some cases tolerance is related to cellular function. © 1992 Wiley-Liss, Inc.
Literature Cited
- Ahearn, G. A., and L. P. Clay (1989) Kinetic analysis of electrogenic 2Na + -1H+ antiport in crustacean hepatopancreas. Am. J. Physiol., 257: R484–493.
- Booth, C. E., B. R. McMahon, P. L. deFur, and P. R. H. Wilkes (1984) Acid-base regulation during exercise and recovery in the blue crab, Callinectes sapidus. Respir. Physiol., 58: 359–376.
- Boron, W. F., W. C. McCormick, and A. Roos (1981) pH regulation in barnacle muscle fibers: Dependence on extracellular sodium and bicarbonate. Am. J. Physiol., 240: C80–C89.
- Burggren, W. W., and B. R. McMahon (1981) Hemolymph oxygen transport, acid-base status, and hydromineral regulation during dehydration in three terrestrial crabs, Cardisoma, Birgus, and Coenobita. J. Exp. Zool., 218: 53–64.
- Burnett, L. E., and B. R. McMahon (1987) Gas exchange, hemolymph acid-base status and the role of branchial water stores during air exposure in three littoral crab species. Physiol. Zool., 60: 27–36.
- Burtin, B., and J. C. Massabuau (1988) Switch from metabolic to ventilatory compensation of extracellular pH in crayfish. J. Exp. Biol., 137: 411–420.
- Burtin, B., J. C. Massabuau, and P. Dejours (1986) Ventilatory regulation of extracellular pH in crayfish exposed to changes in water titration alkalinity and NaCl concentration. Respir. Physiol., 65: 235–243.
- Busa, W. B., J. H. Crowe, and G. B. Matson (1982) Intracellular pH and the status of dormant and developing Artemia embryos. Arch. Biochem. Biophys., 216: 711–718.
- Busa, W. B., and R. Nucitelli (1984) Metabolic regulation via intracellular pH. Am. J. Physiol., 246: R409–438.
- Caldwell, P. C. (1958) Studies on the internal pH of large muscle and nerve fibres. J. Physiol. (Lond.), 142: 22–62.
- Cameron, J. N. (1975) Aerial gas exchange in the terrestrial Brachyura Gecarcinus lateralis and Cardisoma guanhumi. Comp. Biochem. Physiol. [A], 50: 129–134.
- Cameron, J. N. (1978) Effect of hypercapnia on blood acid-base status, NaCl fluxes, and trans-gill potential in freshwater blue crabs, Callinectes sapidus. J. Comp. Physiol., 123: 137–141.
- Cameron, J. N. (1981) Acid-base responses to changes in CO2 in two Pacific crabs: The coconut crab, Birgus latro and a mangrove crab, Cardisoma carnifex. J. Exp. Zool., 218: 65–74.
- Cameron, J. N. (1985a) Compensation of hypercapnic acidosis in the aquatic blue crab, Callinectes sapidus: The predominance of external sea water over carapace carbonate as the proton sink. J. Exp. Biol., 114: 197–206.
- Cameron, J. N. (1985b) Post-moult calcification in the blue crab (Callinectes sapidus): Relationships between apparent net H+ excretion, calcium and bicarbonate. J. Exp. Biol., 119: 275–285.
- Cameron, J. N. (1986) Acid-base equilibria in invertebrates. In: Acid-Base Regulation in Animals. N. Heisler, ed. Elsevier, New York, pp. 357–394.
- Cameron, J. N. (1989a) Acid-base homeostasis: Past and present perspectives. Physiol. Zool., 62: 845–855.
- Cameron, J. N. (1989b) The Respiratory Physiology of Animals. Oxford University Press, New York, pp. 1–353.
- Cameron, J. N. (1989c) Intracellular buffering by dipeptides at high and low temperature in the blue crab Callinectes sapidus. J. Exp. Biol., 143: 543–548.
- Cameron, J. N., and C. V. Batterton (1978) Antennal gland function in the freshwater blue crab, Callinectes sapidus: Water, electrolyte, acid-base and ammonia excretion. J. Comp. Physiol., 123: 143–148.
- Cameron, J. N., and G. K. Iwama (1987) Compensation of progressive hypercapnia in channel catfish and blue crabs: Upper limits, and SID vs. bicarbonate analysis. J. Exp. Biol., 133: 183–197.
- Cameron, J. N., and T. A. Mecklenburg (1973) Aerial gas exchange in the coconut crab, Birgus latro, with some notes on Gecarcoidea lalandii. Respir. Physiol., 19: 245–261.
- Cameron, J. N., and C. M. Wood (1985) Apparent net H+ excretion and CO2 dynamics accompanying carapace mineralization in the blue crab (Callinectes sapidus) following moulting. J. Exp. Biol., 114: 181–196.
- Che Mat, C. R. B., and W. T. W. Potts (1985) Intracellular osmotic regulation in Crangon vulgaris. Comp. Biochem. Physiol. [A], 82: 719–724.
- Copeland, D. E., and A. T. Fitzjarrell (1968) The salt absorbing cells in the gills of the blue crab Callinectes sapidus Rathbun with notes on modified mitochondria. Z. Zellforsch., 92: 1–22.
- DeFur, P. L., and B. R. McMahon (1984) Physiological compensation to short-term air exposure in red rock crabs, Cancer productus Randall, from littoral and sublittoral habitats. II. Acid-base balance. Physiol. Zool., 57: 151–160.
- DeFur, P. L., B. R. McMahon, and C. E. Booth (1983) Analysis of hemolymph oxygen levels and acid-base status during emersion “in situ” in the red rock crab, Cancer productus. Biol. Bull., 165: 582–590.
- DeFur, P. L., P. R. H. Wilkes, and B. R. McMahon (1980) Non-equilibrium acid-base status in Cancer productus: Role of exo-skeletal buffers. Respir. Physiol., 42: 247–261.
- Dejours, P. (1975) Principles of Comparative Respiratory Physiology. Elsevier, New York.
- Dejours, P., J. Armand, and H. Beekenkamp (1982) The effect of ambient chloride concentration changes on branchial chloride-bicarbonate exchanges and hemolymph acid-base balance of crayfish. Respir. Physiol., 48: 375–386.
- Dejours, P., and J. P. Truchot (1988) Respiration of the emerged shore crab at variable ambient oxygenation. J. Comp. Physiol., 158: 387–391.
- Dickson, J. S., and R. M. Dillaman (1985) Distribution and ultra-structure of osmoregulation and respiratory filaments in the gills of the crayfish. Am. Zool., 24: 214 (Abstract).
- Ehrenfeld, J. (1974) Aspects of ionic transport mechanisms in crayfish Astacus leptodactylus. J. Exp. Biol., 61: 57–70.
- Gaillard, S., and A. Malan (1983) Intracellular pH regulation in response to ambient hyperoxia or hypercapnia in the crayfish. Mol. Physiol., 4: 231–243.
- Gaillard, S., and A. Malan (1985) Intracellular pH-temperature relationships in a water breather, the crayfish. Mol. Physiol., 7: 1–16.
- Gaillard, S., and J. L. Rodeau (1987) Na+/H+ exchange in crayfish neurons: Dependence on extracellular sodium and pH. J. Comp. Physiol., 157: 435–444.
- Galler, S., and H. Moser (1986) The ionic mechanism of intracellular pH regulation in crayfish muscle fibers. J. Physiol. (Lond.), 374: 137–151.
-
Greenaway, P.
(1988)
Ion and water balance. In:
Biology of the Land Crabs.
W. W. Burggren and
B. R. McMahon, eds.
Cambridge University Press, New York,
pp. 211–248.
10.1017/CBO9780511753428.008 Google Scholar
- Greenaway, P., H. H. Taylor, and S. Morris (1990) Adaptations to a terrestrial existence by the robber crab Birgus latro. VI. The role of the excretory system in fluid balance. J. Exp. Biol., 152: 505–519.
- Hand, S. C., and J. F. Carpenter (1986) pH-induced metabolic transitions in Artemia embryos mediated by a novel hyster-etic trehalose. Science, 232: 1535–1537.
- Henry, R. P. (1984) The role of carbonic anhydrase in blood ion and acid-base regulation. Am. Zool., 24: 241–251.
- Henry, R. P., and J. N. Cameron (1982a) Acid-base balance in Callinectes sapidus during acclimation from high to low salinity. J. Exp. Biol., 101: 255–264.
- Henry, R. P., and J. N. Cameron (1982b) The distribution and partial characterization of carbonic anhydrase in selected aquatic and terrestrial decapod crustaceans. J. Exp. Zool., 221: 309–321.
- Henry, R. P., G. A. Kormanik, N. J. Smatresk, and J. N. Cameron (1981) The role of CaCO3 dissolution as a source of HCO3− for the buffering of hypercapnic acidosis in aquatic and terrestrial decapod crustaceans. J. Exp. Biol., 94: 269–274.
- Henry, R. P., and M. G. Wheatly (1988) Dynamics of salinity adaptations in the euryhaline crayfish, Pacifastacus leniusculus. Physiol. Zool., 61: 260–271.
- Henry, R. P., and M. G. Wheatly (1992) Interaction of respiration, ion regulation, and acid-base balance in marine crabs. Am. Zool., in press.
- Holliday, C. W., D. L. Mykles, R. C. Terwilliger, and L. J. Dangott (1980) Fluid secretion by the midgut caeca of the crab, Cancer magister. Comp. Biochem. Physiol. [A], 67: 259–263.
- Kerley, D. E., and A. W. Pritchard (1967) Osmotic regulation in the crayfish Pacifastacus leniusculus stepwise acclimated to dilutions of seawater. Comp. Biochem. Physiol. [A], 20: 101–113.
- Kirschner, L. B. (1979) Control mechanisms in crustaceans and fishes. In: Mechanisms of Osmoregulation in Animals. R. Gilles, ed. Wiley Interscience, Chichester, pp. 157–222.
- Kirschner, L. B., L. Greenwald, and T. H. Kerstetter (1973) Effect of amiloride on sodium transfer across body surface of freshwater animals. Am. J. Physiol., 224: 832–837.
- Mantel, L. H. (1968) The foregut of Gecarcinus lateralis as an organ of salt and water balance. Am. Zool., 8: 433–442.
-
Mantel, L. H., and
L. L. Farmer
(1983)
Osmotic and ionic regulation. In:
The Biology of Crustacea. Internal Anatomy and Physiological Regulation.
L. H. Mantel, ed.
Academic Press, New York,
Vol. V,
pp. 53–161.
10.1016/B978-0-12-106405-1.50013-8 Google Scholar
- Massabuau, J. C., and B. Burtin (1985) Ventilatory CO2 reflex response in hypoxic crayfish Astacus leptodactylus acclimated to 20°C. J. Comp. Physiol., 156B:: 115–118.
- Massabuau, J. C., P. Dejours, and Y. Sakakibara (1984) Ventilatory CO2 drive in the crayfish: Influence of oxygen consumption level and water oxygenation. J. Comp. Physiol., 154B:: 65–72.
- McLaughlin, P. A. (1983) Internal anatomy. In: The Biology of Crustacea, Internal Anatomy and Physiological Regulation. L. H. Mantel, ed. Academic Press, New York, Vol. V, pp. 1–52.
- McMahon, B. R., and W. W. Burggren (1981) Acid-base balance following temperature acclimation in land crabs. J. Exp. Zool., 218: 45–52.
-
McMahon, B. R., and
W. W. Burggren
(1988)
Respiration. In:
Biology of the Land Crabs.
W. W. Burggren and
B. R. McMahon, eds.
Cambridge University Press, New York,
pp. 249–297.
10.1017/CBO9780511753428.009 Google Scholar
- Milligan, C. L., P. J. Walsh, C. E. Booth, and D. G. McDonald (1989) Intracellular acid-base regulation during recovery from loco-motor activity in the blue crab (Callinectes sapidus). Physiol. Zool., 62: 621–638.
- Moody, W. J., Jr. (1980) Appearance of calcium action potentials in crayfish slow muscle fibres under conditions of low intracellular pH. J. Physiol. (Lond.), 302: 335–346.
- Moody, W. J., Jr. (1981) The ionic mechanism of intracellular pH regulation in crayfish neurones. J. Physiol. (Lond.), 316: 293–308.
- Neufeld, G. J., C. W. Holliday, and J. B. Pritchard (1980) Salinity adaptation of gill Na, K-ATPase in the blue crab, Callinectes sapidus. J. Exp. Zool., 211: 215–224.
- Peterson, D. R., and R. F. Loizzi (1974) Ultrastructure of the crayfish kidney coelomosac, labyrinth, nephridial canal. J. Morphol., 142: 241–263.
- Riegel, J. A. (1968) Analysis of the distribution of sodium, potassium and osmotic pressure in the urine of crayfishes. J. Exp. Biol., 48: 587–596.
- Riegel, J. A. (1972) Comparative Physiology of Renal Excretion. Oliver & Boyd, Edinburgh.
- Rodeau, J. L. (1984) Effect of temperature on intracellular pH in crayfish neurons and muscle fibers. Am. J. Physiol., 246: C45–C49.
- Sanders, N. K., and J. J. Childress (1988) Ion replacement as a buoyancy mechanism in a pelagic deep-sea crustacean. J. Exp. Biol., 138: 333–343.
- Shaw, J. (1959) The absorption of sodium ions by the crayfish Astacus pallipes Lereboullet. I. The effect of external and internal sodium concentrations. J. Exp. Biol., 36: 126–144.
- Shaw, J. (1960a) The absorption of sodium ions by the crayfish Astacus pallipes. II. The effect of the external anion. J. Exp. Biol., 37: 534–547.
- Shaw, J. (1960b) The absorption of sodium ions by the crayfish Astacus pallipes. III. The effect of other cations in the external solution. J. Exp Biol., 37: 557–572.
- Shetlar, R. E., and D. W. Towle (1989) Electrogenic sodium-proton exchange in membrane vesicles from crab (Carcinus maenas) gill. Am. J. Physiol., 257: R924–R933.
- Smatresk, N. J., and J. N. Cameron (1981) Post-exercise acid-base balance and ventilatory control in Birgus latro, the coconut crab. J. Exp. Zool., 218: 75–82.
- Smatresk, N. J., A. J. Preslar, and J. N. Cameron (1979) Post-exercise acid-base disturbance in Gecarcinus lateralis, a terrestrial crab. J. Exp. Zool., 210: 205–210.
-
Somero, G. N.
(1985)
Intracellular pH, buffering substances and protein: Imidazole protonation and the conservation of protein structure and function. In:
Transport Processes, Iono and Osmoregulation.
R. Gilles, ed.
Springer-Verlag, Berlin,
pp. 454–468.
10.1007/978-3-642-70613-4_38 Google Scholar
- Somero, G. N. (1986) Protons, osmolytes, and fitness of internal milieu for protein function. Am. J. Physiol., 251: R197–R213.
- Taylor, E. W., and M. G. Wheatly (1980) Ventilation, heart rate and respiratory gas exchange in the crayfish A ustropotamobius pallipes (Lereboullet) submerged in normoxic water and following 3h exposure in air at 15°C. J. Comp. Physiol., 138: 67–78.
- Taylor, E. W., and M. G. Wheatly (1981) The effect of long-term aerial exposure on heart rate, ventilation, respiratory gas exchange and acid-base status in the crayfish Austropota-mobius pallipes. J. Exp. Biol., 92: 109–124.
- Towle, D. W., G. Palmer, and J. Harris (1976) Role of gill Na + + K+ -dependent ATPase in acclimation of blue crabs (Callinectes sapidus) to low salinity. J. Exp. Zool., 196: 315–322.
- Truchot, J. P. (1975) Blood acid-base changes during experimental emersion and reimmersion of the intertidal crab Carcinus maenas (L.). Respir. Physiol., 23: 351–360.
- Truchot, J. P. (1979) Mechanisms of the compensation of blood respiratory acid-base disturbances in the shore crab, Carcinus maenas (L.). J. Exp. Zool., 210: 407–416.
- Truchot, J. P. (1983) Regulation of acid-base balance. In: The Biology of Crustacea. Internal Anatomy and Physiological Regulation. L. H. Mantel, ed. Academic Press, London, Vol. V, pp. 431–457.
-
Truchot, J. P.
(1987)
Comparative Aspects of Extracellular Acid-Base Balance.
Springer-Verlag, Berlin,
pp. 1–248.
10.1007/978-3-642-83130-0_1 Google Scholar
- Tyler-Jones, R., and E. W. Taylor (1988) Analysis of haemolymph and muscle acid-base status during aerial exposure in the crayfish Austropotamobius pallipes. J. Exp. Biol., 134: 409–422.
- Utterback, P. J., and S. C. Hand (1987) Yolk platelet degradation in preemergence Artemia embryos: Response to protons in vivo and in vitro. Am. J. Physiol., 252: R774–781.
- Walsh, P. J., and C. L. Milligan (1989) Coordination of metabolism and intracellular acid-base status: Ionic regulation and metabolic consequences. Can. J. Zool., 67: 2994–3004.
- Wheatly, M. G. (1985a) Free amino acid and inorganic ion regulation in the muscle and haemolymph of the Blue crab Callinectes sapidus (Rathbun) in relation to the molting cycle. J. Crust. Biol., 5: 223–233.
- Wheatly, M. G. (1985b) The role of the antennal gland in ion and acid-base regulation during hyposaline exposure of the Dungeness crab Cancer magister (Dana). J. Comp. Physiol., 155: 445–454.
- Wheatly, M. G. (1987) Physiological responses of the rock crab Cancer irroratus (Say) to environmental hyperoxia. I. Acid-base regulation. Physiol. Zool., 60: 398–405.
- Wheatly, M. G. (1989) Physiological responses of the crayfish Pacifastacus leniusculus (Dana) to environmental hyperoxia. I. Extracellular acid-base and electrolyte status and trans-branchial exchange. J. Exp. Biol., 143: 33–51.
- Wheatly, M. G. (1990) Postmolt electrolyte regulation in crayfish: Ca budget, hemolymph ions and tissue Ca ATPase. Am. Zool., 30: 63A (Abstract).
- Wheatly, M. G., W. W. Burggren, and B. R. McMahon (1984) The effects of temperature and water availability on ion and acid-base balance in hemolymph of the land crab Coenobita clypeatus. Biol. Bull., 166: 427–445.
- Wheatly, M. G., and R. P. Henry (1987) Branchial and anten-nal gland Na + /K+ dependent ATPase and carbonic anhy-drase activity during salinity acclimation of the euryhaline crayfish Pacifastacus leniusculus. J. Exp. Biol., 133: 73–86.
- Wheatly, M. G., and L. A. Ignaszewski (1990) Electrolyte and gas exchange during the molting cycle of a freshwater crayfish. J. Exp. Biol., 151: 469–483.
- Wheatly, M. G., B. R. McMahon, W. W. Burggren, and A. L. Pinder (1986) Haemolymph acid-base, electrolyte and gas status during sustained voluntary activity in the land hermit crab (Coenobita compressus). J. Exp. Biol., 125: 225–243.
- Wheatly, M. G., and E. W. Taylor (1979) Oxygen levels, acid-base status and heart rate during emersion of the shore crab Carcinus maenas (L.) into air J. Comp. Physiol., 132: 305–311.
- Wheatly, M. G., and T. Toop (1989) Physiological responses of the crayfish Pacifastacus leniusculus (Dana) to environmental hyperoxia: II. The role of the antennal gland. J. Exp. Biol., 143: 53–70.
- Wheatly, M. G., T. Toop, R. J. Morrison, and L. C. Yow (1991) Physiological responses of the crayfish Pacifastacus leniusculus (Dana) to environmental hyperoxia. III. Intracellular acid-base balance. Physiol. Zool., 64: 323–343.
- Wolcott, T. G., and D. L. Wolcott (1985) Extrarenal modification of urine for ion conservation in ghost crabs, Ocypode quad-rata (Fabricius). J. Exp. Mar. Biol. Ecol., 91: 93–107.
- Wood, C. M., and R. G. Boutilier (1985) Osmoregulation, ionic exchange, blood chemistry, and nitrogenous waste excretion in the land crab Cardisoma carnifex: A field and laboratory study. Biol. Bull., 169: 267–290.
- Wood, C. M., R. G. Boutilier, and D. J. Randall (1986) The physiology of dehydration stress in the land crab Cardisoma carnifex: Respiration, ionoregulation, acid-base balance and nitrogenous waste excretion. J. Exp. Biol., 126: 271–296.
- Wood, C. M., and J. N. Cameron (1985) Temperature and the physiology of intracellular and extracellular acid-base regulation in the Blue crab Callinectes sapidus. J. Exp. Biol., 114: 151–179.
- Wood, C. M., and D. J. Randall (1981) Haemolymph gas transport, acid-base regulation, and anaerobic metabolism during exercise in the land crab (Cardisoma carnifex). J. Exp. Zool., 218: 23–35.
- Wood, C. M., and M. S. Rogano (1986) Physiological responses to acid stress in crayfish (Orconectes): Haemolymph ions, acid-base status, and exchanges with the environment. Can. J. Fish. Aquat. Sci., 43: 1017–1026.