Adenine nucleotides and adenosine metabolism in pig kidney proximal tubule membranes
Julià Blanco
Departament de Bioquímica i Fisilogia, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain
Search for more papers by this authorEnric I. Canela
Departament de Bioquímica i Fisilogia, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain
Search for more papers by this authorJoan Sayós
Departament de Bioquímica i Fisilogia, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain
Search for more papers by this authorJosefa Mallol
Departament de Bioquímica i Fisilogia, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain
Search for more papers by this authorCarme Lluis
Departament de Bioquímica i Fisilogia, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain
Search for more papers by this authorCorresponding Author
Rafael Franco
Departament de Bioquímica i Fisilogia, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain
Departament de Bioquímica i Fisilogia, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Catalonia, SpainSearch for more papers by this authorJulià Blanco
Departament de Bioquímica i Fisilogia, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain
Search for more papers by this authorEnric I. Canela
Departament de Bioquímica i Fisilogia, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain
Search for more papers by this authorJoan Sayós
Departament de Bioquímica i Fisilogia, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain
Search for more papers by this authorJosefa Mallol
Departament de Bioquímica i Fisilogia, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain
Search for more papers by this authorCarme Lluis
Departament de Bioquímica i Fisilogia, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain
Search for more papers by this authorCorresponding Author
Rafael Franco
Departament de Bioquímica i Fisilogia, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Catalonia, Spain
Departament de Bioquímica i Fisilogia, Facultat de Química, Universitat de Barcelona, Martí i Franquès, 1, 08028 Barcelona, Catalonia, SpainSearch for more papers by this authorAbstract
Exogenous adenosine triphosphate (ATP) added to brush-border membrane vesicles was rapidly degraded mainly to inosine according to the high ecto-nucleotidase activities in these vesicles. In the absence of phosphate, inosine was slowly transformed into hypoxanthine, and xanthine oxidase and dehydrogenase activities were not detected. The presence of ecto-adenosine deaminase and ecto-adenosine monophosphate (AMP) nucleotidase was shown. The ecto-adenosine deaminase was inhibited by deoxycoformycin and was also detected in rat renal brush-border membrane vesicles. Using orthovanadate, levamisole, and α, β-methylene adenosine diphosphate as possible inhibitors, alkaline phosphatase was shown to be the main agent responsible for ecto-AMP nucleotidase activity. In pig renal basolateral membrane vesicles and in whole cell extracts from pig renal cortex, ecto-AMP nucleotidase was the limiting factor in ATP degradation. Comparing the ATP catabolism in the whole cell cortical extract with the catabolism in the same sample precleared of membranes, it was shown that ectonucleotidase activity is mainly bound to the membranous components. It is also shown that the whole cell extract of pig renal cortex has hypoxanthine phosphoribosyl transferase activity, and it seems probable that the rapid and specific formation of luminal inosine and its transport into the cell in competition with adenosine may start the purine salvage pathway through the synthesis of IMP from hypoxanthine. © Wiley-Liss, Inc.
Literature Cited
- Ametani, M. S., Southard, J. H., and Belzer, F. O. (1990) Importance of glutathione and adenosine in cold storage of the kidney. Transplant. Proc. 22: 469–471.
- Angielski, S., LeHir, M., and Dubach, U. C. (1983) Transport of adenosine by renal brush-border membranes. Pflugers Arch. 397: 75–77.
- Aran, J. M., Colomer, D., Matutes, E., Vives-Corrons, J. L., and Franco, R. (1991) Presence of adenosine deaminase on the surface of monoclonal blood cells: Immunochemical localization using light and electron microscopy. J. Histochem. Cytochem. 39: 1001–1008.
- Arend, L. J., Bakris, G. L., Burnett Jr. J. C., and Megerian, C. (1987) Role of intrarenal adenosine in the renal hemodynamic response to contrast media. J. Lab. Clin. Med. 110: 406–411.
- Arnold, P. E., van Putten, V. J., Lumlertgul, D., Burke, T. J., and Schrier, R. W. (1986) Adenine nucleotide metabolism and mitochondrial Ca2+ transport following renal ischemia. Am. J. Physiol. 250: F357–F363.
- Barfuss, D. W., McCann, W. P., and Katholi, R. E. (1992) Axial heterogeneity of adenosine transport and metabolism in the rabbit proximal tubule. Kidney Int. 41: 1143–1149.
- Blanco, J., Mallol, J., Lluis, C., Canela, E. I., and Franco, R. (1990) Adenosine metabolism in kidney slices under normoxic conditions. J. Cell. Physiol. 143: 344–351.
- Blanco, J., Canela, E. I., Mallol, J., Lluis, C., and Franco, R. (1992) Characterization of adenosine receptors in brush-border membranes from pig kidney. Br. J. Pharmacol. 107: 671–678.
- Buhl, M. R. (1982) Purine metabolism in ischemic kidney tissue. Dan. Med. Bull. 29: 1–26.
- Cadnapaphornchai, P., Kellner, D., Golembieski, A., and McDonald, F. D. (1991) Role of adenosine and theophylline on the recovery of adenine nucleotides in postischemic cultured renal tubular cells. J. Pharmacol. Exp. Ther. 257: 774–780.
- Collis, M. G., Baxter, G. S., and Keddie, J. R. (1986) The adenosine receptor antagonist 8-phenyltheophylline, causes diuresis and saliuresis in the rat. J. Pharm. Pharmacol. 38: 850–852.
- Čulic, O., Sabolić, I., and Žanić-Grubiší, T., (1990) The stepwise hydrolysis of adenine nucleotides by ectoenzymes of rat renal brushborder membranes. Biochim. Biophys. Acta, 1030: 143–151.
- Deray, G., Sabra, R., Jackson, H. E. K., and Branch, R. A. (1990) Interaction between angiotensin II and adenosine in mediating the vasoconstrictor response to intrarenal hypertonic saline infusion in the dog. J. Pharmacol. Exp. Ther. 252: 631–635.
- Felix, R., and Fleisch, H. (1974) The pyrophosphatase and (Ca2+-Mg2+)-ATPase activity of purified calf bone alkaline phosphatase. Biochim. Biophys. Acta, 350: 84–94.
- Franco, R., Centelles, J. J., and Kinne, R. K. H. (1990) Further characterization of adenosine transport in renal brush-border membranes. Biochim. Biophys. Acta, 1024: 241–248.
- Gordon, E. L., Pearson, J. D., Dickinson, E. S., Moreau, D. and Slakey, L. L. (1989) The hydrolysis of extracellular adenine nucleotides by arterial smooth muscle cells. J. Biol. Chem. 264: 18986–18992.
- Gouyon, J.-B., and Guignard, J.-P. (1989) Adenosine in the immature kidney. Dev. Pharmacol. Ther. 13: 113–119.
- Hammer, D. F., Unverferth, D. V., Kelley, R. E., Harvan, P. A., and Altschuld, R. A. (1988) Extraction and measurement of mycardial nucleotides, nucleosides and purine bases by high performance liquid chromatography. Anal. Biochem. 169: 300–305.
- Hilden, S. A., and Madias, N. E. (1990) Stimulation of canine kidney BBMV ATPase activity by acid pH in the presence of Zn2+. Membr. Biochem. 9: 68–81.
- Kinsella, J. L., Holohan, P. D., Pessaii, N. I., and Ross, C. R. (1979) Isolation of luminal and antiluminal membranes from dog kidney cortex. Biochim. Biophys. Acta, 552: 468–477.
- Le Hir, M., and Dubach, U. C. (1984) Sodium gradient-energized concentrative transport of adenosine in renal brush-border vesicles. Pflügers Arch. 401: 58–63.
- Le Hir, M., Angielski, S., and Dubach, U. C. (1985) Properties of an ecto-5′-nucleotidase of the renal brush-border. Renal Physiol. 8: 321–327.
- Lin, J. T., DaCruz, M. E. M., Riedel, S., and Kinne, R. (1981) Partial purification of dog kidney sodium-D-glucose cotransport system by affinity chromatography on a phlorttzin polymer. Biochim. Biophys. Acta, 640: 43–54.
- Mandel, L. J., Takano, T. S., Soltoff, S. P., and Murdaugh, S. (1988) Mechanism whereby exogenous adenine nucleotides improve rabbit renal proximal function during and after anoxia. J. Clin. Invest. 4: 1255–1264.
- Meghji, P., Middleton, K. M., and Newby, A. C. (1988) Absolute rates of adenosine formation during ischaemia in rat and pigeon hearts. Biochem. J. 249: 695–703.
- Oliveira, A., Lamas, S., Rodríguez-Puyol, D., and López-Novoa, J. M. (1989) Adenosine induces mesangial cell contraction by A1-type receptors. Kidney Int. 35: 1300–1305.
- Pie, G., and Le Hir, M. (1991) The soluble “low KM” 5′-nucleotidase of rat kidney represents solubilized ecto-5′-nucleotidase. Biochem. J. 273: 409–413.
- Saggerson, E. D., Carpenter, C. A., and Veiga, J. A. S. (1991) Stimulation of renal gluconeogenesis by exogenous adenine nucleotides. Biochim. Biophys. Acta, 755: 119–126.
- Schrader, W. P., Miczek, A. D., West, C. A., and Samsonoff, W. A. (1983) Evidence for receptor-mediate uptake of adenosine deaminase in rabbit kidney. J. Histochem. Cytochem. 36: 1481–1487.
- Siegel, N. J., Avison, H. J., Reilly, H. F., Alger, J. R., and Shulman, R. G. (1983) Enhanced recovery of renal ATP-MgCl2 determined by 31P-NMR. Am. J. Physiol. 245: F530–F534.
- Sorensen, K., and Brodbeck, U. (1986) A sensitive protein assay method using micro-titer platters. Experientia, 42: 161–162.
- Spielman, W. S., and Arend, L. J. (1991) Adenosine receptors and signaling in the kidney. Hypertension, 17: 117–130.
- Trimble, M. E., and Coulson, E. (1984) Adenosine transport in perfused rat kidney and renal cortical membrane vesicles. Am. J. Physiol. 246: F794–F803.
- Unemori-Aikawa, Y. (1971) An alkaline phosphatase in the clam Meretrix meretrix Lusoria (Gmelin), with affinities for nucleotides. Comp. Biochem. Physiol. 40B: 347–358.
- Vandenberghe, G., Vincent, M. F., and Bontemps, F. (1989) Pathways and control of adenine nucleotide catabolism in anoxic rat hepatocytes. Biomed. Biophys. Acta, 48: S5–S10.
- van Waarde, A., Avison, M. J., Thulin, G., Gaudio, K. M., Schulman, R. G., and Siegel, N. J. (1992) Role of nucleoside uptake in renal postischemic ATP synthesis. Am. J. Physiol. 262: F1092–F1099.
- Weinberg, J. M., Davis, J. A., Lawton, A., and Abarzua, M. (1988) Modulation of cell nucleotide levels of isolated kidney tubules. Am. J. Physiol. 254: F311–F322.