Platelet-activating factor stimulates phosphatidic acid formation in cultured rat mesangial cells: Roles of phospholipase D, diglyceride kinase, and de novo phospholipid synthesis
Mark Kester
Departments of Medicine and Physiology/Biophysics, Case Western Reserve University School of Medicine, and Division of Nephrology, University Hospitals of Cleveland, Cleveland, Ohio 44106
Search for more papers by this authorMark Kester
Departments of Medicine and Physiology/Biophysics, Case Western Reserve University School of Medicine, and Division of Nephrology, University Hospitals of Cleveland, Cleveland, Ohio 44106
Search for more papers by this authorAbstract
Platelet-activating factor (PAF) stimulates phospholipase C (PLC)-induced hydrolysis of phosphatidylinositol-4,5-bisphosphate (Ptdlns-4,5-P2). Yet, PAF-stimulated diglycerides (DG) are still elevated at time points where inositol polyphosphates have returned to basal levels. Thus, other signal transduction pathways that hydrolyze phosphatidylcholine (PtdCho) or phosphatidylethanolamine (PtdEth) and form DG and phosphatidic acids (PA) through either PLC or phospholipase D (PLD) may also mediate PAF-stimulated cellular responses. Initially the effects of PAF upon 32P-PA generation in mesangial cells (MC) were assessed. PA formation may be indicative of several metabolic pathways including PLD and DG kinase activities as well as de novo phospholipid synthesis. PAF (10−7 M) increased 32P-PA formation as early as 5 seconds and this elevation persisted up to 15 minutes. When MC were pretreated with the DG kinase inhibitor-R59022, PAF-induced 32P-PA formation was diminished at early but not late time points, demonstrating that the initial component of PA formation may be due, in part, to PLC activation and subsequent phosphorylation of DG. The reciprocal reaction, PA phosphohydrolase, which dephosphorylates PA to from DG was not stimulated by PAF, suggesting that the sustained elevation of DG induced by PAF is primarily a reflection of PLC. 3H-glycerol pulse-labeling experiments suggest that PAF also stimulates de novo phospholipid synthesis which also contributes to PA formation. Conclusive proof for PLD in the generation of PA was obtained by assessing the formation of 3H-phosphatidylethanol (PEt) from 3H-alkyl-lyso-glycero phosphocholine (GPC) and exogenous ethanol. PAF stimulated alkyl-PEt generation in the presence but not the absence of 0.5% ethanol. Also, PAF induced a concomitant elevation of alkyl-PA at 15 minutes and this elevation of alkyl-PA was reduced when the cells were exposed to exogenous ethanol, reflecting the formation of PEt. Corroborating evidence suggests that PAF stimulates 3H-choline and 3H-ethanolamine release, suggesting that PtdCho and PtdEth are substrates for PLD. Thus, these data demonstrate that MC respond to PAF with elevated PLD and DG kinase activities as well as with an increased rate of de novo lipid synthesis which increases PA, a potential intracellular signal. © 1993 Wiley-Liss, Inc.
Literature Cited
- Anthes, S. C., Eckel, S., Siegel, M. I., Egan, R. W., and Billah, M. M. (1989) Phospholipase D in homogenates from HL-60 granulocytes: Implications of calcium and G protein control. Bicohem. Biophys. Res. Commun., 163: 657–664.
- Arakawa, T., Okuda, T., and Kurokawa, K. (1992) Endothelin and vasopressin attenuate and PAF stimulates the growth of early passaged cultured rat MC. J. Am. Soc. Nephrol., 3: 461A.
- Balsinde, J., and Mollinedo, F. (1991) PAF synergizes with PMA inactivating phospholipase D in the human promonocytic cell line U937. J. Biol. Chem., 266: 18726–18730.
- Baroggi, N., Etienne, A., and Braquet, P. (1986) Changes in cytosolic free calcium in rabbit platelets. Agents Actions, 20: 87–98.
- Bell, R. M., and Burns, D. J. (1991) Lipid activation of PKC. J. Biol. Chem., 266: 4661–4664.
- Benveniste, J. (1981) PAF (PAF-acether): Present status. Agents Actions, 11: 559–562.
- Benveniste, J., Henson, P. M., and Cochrane, C. G. (1972) Leukocyte dependent histamine release from rabbit platelets. J. Exp. Med. 136: 1356–1377.
- Besterman, J. M., Duronio, V., and Cuatrecasas, P. (1986) Rapid formation of DG from PtdCho: A pathway for generation of second messengers. Proc. Natl. Acad. Sci. USA, 83: 6785–6789.
- Billah, M. M., and Anthes, J. C. (1990) The regulation and cellular functions of PtdCho hydrolysis. Biochem. J., 269: 281–291.
- Billah, M. M., Lupetina, E. L., and Cuatrecasas, P. (1981) Phospholipase A2 activity specific for phosphatidic acid—A possible mechanism for the production of arachidonic acid in platelets. J. Biol. Chem., 256: 5399–5403.
- Billah, M. M., Pai, J. K., Mullmann, T. J., Egan, R. W., and Siegel, M. I. (1989) Regulation of phospholipase D in HL 60 granulocytes: Activation by phorbol esters, diglycerides, and calcium ionophores via PKC-independent mechanisms. J. Biol. Chem., 264: 9069–9076.
- Bligh, E. G., and Dyer, W. J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37: 911–917.
- Bocckino, S. B., Blackmore, P. F., Wilson, P. B., and Exton, J. H. (1987) Phosphatidate accumulation in hormone-treated hepatocytes via a phospholipase D mechanism. J. Biol. Chem., 262: 15309–15315.
- Bocckino, S. B., Wilson, P. B., and Exton, J. H. (1991) Phosphatidate-dependent protein phosphorylation. Proc. Natl. Acad. Sci. USA, 88: 6210–6213.
- Bonventre, J. V., Weber, P. C., and Gronich, J. M. (1988) PAF and PDGF increase cytosolic [Ca++] and phospholipase activity in mesangial cells. Am. J. Physiol., 254: F87–F94.
- Cabot, M. C., Welsh, C. J., Cao, H. T., and Chabbott, H. (1988) The PtdCho pathway of DG formation stimulated by phorbol esters occurs via PLD activation. FEBS Lett., 233: 153–157.
- Camussi, G. (1986) Potential role of PAF in renal pathophysiology. Kidney Int., 29: 469–477.
- Demopoulus, C., Pinckard, R. N., and Hanahan, D. J. (1979) Platelet activating factor. J. Biol. Chem., 254: 9355–9358.
- Dhar, S., and Shukla, S. D. (1991) Involvement of pp60 C-SRC in PAF-stimulated platelets: Evidence for translocation from cytosol to membrane. J. Biol. Chem., 266: 18797–18801.
- Diaz-Meco, M. T., Larrodera, P., Lopez-Barohona, M., Cornet, M. E., Barreno, P. G., and Moscat, J. (1989) PLC-mediated hydrolysis of PtdCho is activated by muscurinic agonists. Biochem. J., 263: 115–120.
- Domino, S. E., Bocckino, S. B., and Garbers, D. L. (1989) Activation of phospholipase D by the fucose-sulfate glycoconjugate induces an acrosome reaction in spermatozoa. J. Biol. Chem., 264: 9412–9419.
- Fisher, G. J., Henderson, P. A., Vorhees, J. J., and Baldassare, E. (1991) Epidermal growth factor-induced hydrolysis of PtdCho by PLD and PLC in human dermal fibroblasts. J. Cell. Physiol., 146: 309–317.
- Hallem, T., Sanchez, A., and Rink, T. J. (1984) Stimulus response coupling in human platelets. Biochemistry, 218: 819–827.
- Hawaguchi, H., and Yasuda, H. (1984) PAF stimulates phospholipase in quiescent Swiss mouse 3T3 fibroblast. FEBS Lett., 176: 93–96.
- Huang, C., and Cabot, M. C. (1990a) Vasopressin-induced polyphosphoinositide and PtdCho degradation in fibroblasts: Temporal relationship for formation of PLC/PLD hydrolysis products. J. Biol. Chem., 265: 17468–17473.
- Huang, C., and Cabot, M. C. (1990b) Phorbol diester stimulates the accumulation of PA, PEt and DG in three cell types: Evidence for the indirect formation of PtdCho-derived DG by a PLD pathway and direct formation of DG by a PLC pathway. J. Biol. Chem., 265: 14858–14863.
- Huang, R., Kucera, G. L., and Rittenhouse, S. E. (1991) Elevated cytosolic Ca2+ activates phospholipase D in human platelets. J. Biol. Chem., 266: 1652–1655.
- Kanaho, Y., Kanoh, H., Saitoh, K., and Nozawa, Y. (1991) Phospholipase D activation by PAF, leukotriene B4 and FMLP in rabbit neutrophils: Phospholipase D activation is involved in enzyme release. J. Immunol., 146: 3536–3541.
- Kester, M., Ledvora, R. F., and Barany, M. (1984) The potentiation of arterial contraction with PAF. Pfleugers Arch., 400: 200–202.
- Kester, M., Kumar, R., and Hanahan, D. J. (1986) AGEPC stimulates Na/Ca exchange, protein phosphorylation, and polyphosphoinositide turnover in rat ileal plasmalemmal vesicles. Biochim. Biophys. Acta, 888: 306–315.
- Kester, M., Mene', P., Dubyak, G. R., and Dunn, M. J. (1987) Elevation of [Ca2+]i by platelet-activating factor in cultured rat mesangial cells. FASEB J., 1: 215–219.
- Kester, M., Simonson, M. S., Mene', P., and Sedor, J. R. (1989) Interleukin-1 generates transmembrane signals from phospholipids through novel pathways in cultured rat mesangial cells. J. Clin. Invest., 83: 718–723.
- Kester, M., Simonson, M. S., McDermott, R. D., Baldi, E., and Dunn, M. J. (1992a) Endothelin stimulates phosphatidic acid formation in cultured rat mesangial cells: Role of a protein kinase C-regulated phospholipase D. J. Cell. Physiol., 150: 528–585.
- Kester, M., Thomas, C. P., Wang, J., and Dunn, M. J. (1992b) Platelet-activating factor stimulates multiple signaling pathways in cultured rat mesangial cells. J. Cell Physiol., 153: 244–255.
- Kiss, Z., and Anderson, W. B. (1989) Alcohols selectively stimulate phospholipase D-mediated hydrolysis of PtdEth in NIH 3T3 cells. FEBS Lett., 257: 45–48.
- Kiss, Z., and Anderson, W. B. (1990) ATP stimulates the hydrolysis of PtdEth in NIH 3T3 cells. J. Biol. Chem., 265: 7345–7350.
- Knauss, T. C., Jaffer, F. E., and Abboud, H. E. (1990) PA modulates DNA synthesis, phospholipase C and PDGF mRNAs in cultured mesangial cells. J. Biol. Chem., 265: 14457–14463.
- Kreisberg, J. I., Venkatachalem, M., and Troyer, D. (1985) Contractile properties of cultured glomerular mesangial cells. Am. J. Physiol., 249: F457–463.
- Larrodera, P., Cornet, M. E., Diaz-Meco, M. T., Lopez-Barahova, M., Diaz-Laviads, I., Guddac, P. H., Johansen, T., and Morat, J. (1990) Phospholipase C-mediated hydrolysis of PtdCho is an important step in PDGF-stimulated DNA synthesis. Cell, 61: 1113–1120.
- Liscovitch, M., and Amsterdam, A. (1989) Gonadotropin-releasing hormone activates phospholipase D in ovarian granulosa cells. J. Biol. Chem., 264: 11762–11767.
- Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem., 193: 265–275.
- Martin, T. W. (1988) Formation of diacylglycerol by a phospholipase D-phosphatidate phosphatase pathway specific to PtdCho in endothelial cells. Biochim. Biophys. Acta, 962: 282–296.
- Martin, T. W., Feldman, D. R., Goldstein, K. E., and Wagner, J. R. (1989) Long-term phorbol ester treatment dissociates phospholipase D activation from phosphoinositide hydrolysis and prostacyclin synthesis. Biochem. Biophys. Res. Commun., 165: 319–326.
- Martinson, E. A., Goldstein, D., and Brown, J. H. (1989) Muscarinic receptor activation of PtdCho hyrolysis. J. Biol. Chem., 264: 14748–14754.
- Mauco, G., Chap, H., and Douste-Blazy, L. (1983) PAF promotes an early degradation of PIP2 in rabbit platelets. FEBS Lett., 153: 361–365.
- Mené, P., Simonson, M. S., and Dunn, M. J. (1989) Physiology of the mesangial cell. Physiol. Rev., 69: 1347–1424.
- Moolenar, W. H., Kruiger, W., Tilly, B. C., Verlaan, L., Bierman, A. J., and de Laat, S. A. (1986) Growth factor-like action of PA. Nature, 323: 171–173.
- Pai, S. K., Siegel, M. I., Egan, R. W., and Billah, M. M. (1988) Activation of phospholipase D by chemotactic peptide in HL-60 granulocytes. Biochem. Biophys. Res. Commun., 150: 355–364.
- Prescott, S. M., Zimmerman, G. A., and McIntyre, T. M. (1984) Human endothelial cells in culture produce PAF when stimulated with thrombin. Proc. Natl. Acad. Sci. USA, 81: 3534–3538.
- Prescott, S. M., Zimmerman, G. A., and McIntyre, T. M. (1990) Platelet-activating factor. J. Biol. Chem., 265: 17381–17384.
- Qian, Z., and Drews, L. R. (1990) A novel mechanism for acetylcholine to generate diacylglycerol in brain. J. Biol. Chem., 265: 3607–3610.
- Scharschmidt, L. A., Lianos, E., and Dunn, M. J. (1984) Arachidonate metabolites and the control of glomerular function. Fed. Proc., 42: 3058–3063.
- Schlondorff, D. J., Satriano, J. A., Hagege, J., Perez, J., and Baud, L. (1984) Effects of PAF and serum treated zymosan on prostaglandin E2 synthesis, arachidonate release, and contraction of cultured rat mesangial cells. J. Clin. Invest., 73: 1227–1231.
- Schlondorff, D., Singhal, P., Hassid, A., Satriano, J. A., and DeCandido, S. (1989) Relationship of GTP-binding proteins, phospholipase C and PGE2 synthesis in rat glomerular mesangial cells. Am. J. Physiol., 256: F171–F178.
- Shukla, S. (1992) Platelet-activating factor receptor and signal transduction mechanisms. FASEB J., 6: 2276–2301.
- Shukla, S. D., and Halenda, S. P. (1991) Phospholipase D in cell signal-ling and its relationship to phospholipase C. Life Sci., 48: 851–866.
- Shukla, S. D., Buxton, D. B., Olson, M. S., and Hanahan, D. J. (1983) AGEPC effects on hepatic metabolism. J. Biol. Chem., 258: 10212–10214.
- Simonson, M. S., and Dunn, M. J. (1986) Leukotriene C4 and D4 contract rat glomerular mesangial cells. Kidney Int., 30: 524–531.
- Simonson, M. S., and Dunn, M. J. (1990) Endothelin-1 stimulates contraction of rat glomerular mesangial cells and potentiates B-adrenergic-mediated cyclic AMP accumulation. J. Clin. Invest., 85: 790–797.
- Simonson, M. S., and Dunn, M. J. (1991) Calcium signalling by distinct endothelin peptides in glomerular mesangial cells. Exp. Cell. Res., 192: 148–152.
- Stimler, N. P., and O'Flaherty, J. T. (1983) Spasmogenic properties of PAF. Am. J. Pathol., 113: 75–84.
- Stoll, L. L., and Spector, A. A. (1989) Interaction of PAG with endothelial and vascular smooth muscle cells in co-culture. J. Cell Physiol., 139: 253–261.
- Striker, G. E., Killen, P. O., and Farrin, F. M. (1980) Human glomerular cells in vitro: Isolation and characterization. Transplant Proc., 12(Suppl 1): 88–99.
- Takai, T., and Kanfer, J. N. (1979) Partial purification and properties of a rat brain phospholipase D. J. Biol. Chem., 254: 9761–9765.
- Tettenborn, C. S., and Mueller, G. C. (1988) TPA activates PEt and Ptdglycerol synthesis by phospholipase D in cell lysates. Biochem. Biophys. Res. Commun., 155: 249–255.
- Thomas, C. P., Mattera, R., Dunn, M. J., and Kester, M. GTP-binding protein-coupled endothelin signalling in rat glomerular mesangial cells: Evidence for pertussis toxin-sensitive and -insensitive pathways. Horiz. Endocrinol. (in press).
-
Tokumra, A.,
Fukuzawa, K., and
Tsukatani, H.
(1984)
Contractile effects of 1-O-hexadecyl-2-O-acetyl-sn-glycero-3-phosphocholine on strips of isolated rat intestine.
J. Pharmacol.,
36:
210–212.
10.1111/j.2042-7158.1984.tb06945.x Google Scholar
- Tou, J. S., Jeter, J. R., Dila, C. P., and Venkatosh, S. (1991) Stimulation of PA mass and increased de novo synthesis of glycerolipids in PAF-activated neutrophils. Biochem. J., 280: 625–629.
- Tsai, M. H., Yu, C. L., Wei, F. S., and Stacey, D. W. (1989) The effect of GTPase activating protein upon ras is inhibited by mitogenically responsive lipids. Science, 243: 522–526.
- Uhing, R. J., Pipic, V., Hollenback, P. W., and Adams, D. O. (1989) Involvement of PKC in PAF-stimulated DG accumulation in murine peritoneal macrophages. J. Biol. Chem., 264: 9224–9230.
- Wang, J., and Dunn, M. J. (1987) PAF mediates endotoxin-induced acute renal insufficiency in rats. Am. J. Physiol., 253: F1283–F1289.
- Wang, C. J., and Tai, H. H. (1988) Receptors of PAF are coupled to PtdCho-related phospholipase C and D in rabbit platelets. FASEB J., 2: A1575.
- Werber, H., Emancipator, S. N., Tykocinski, M. L., and Sedor, J. R. (1987) The interleukin-1 gene is expressed by rat glomerular mesangial cells and is augmented in immune complex glomerulonephritis. J. Immunol., 138: 3207–3212.
- Yavin, E. (1976) Regulation of phospholipid metabolism in differentiating cells from rat brain cerebral hemispheres in culture. J. Biol. Chem., 251: 1392–1397.
- Yu, C. L., Tsai, M. H., and Stacey, D. W. (1988) Cellular ras activity and phospholipid metabolism. Cell, 52: 63–71.