Theoretical study on the luminescent and reaction mechanism of dansyl-based fluorescence probe for detecting hydrogen sulfide
Corresponding Author
Huixue Li
School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu, China
Correspondence
Huixue Li and Zhifeng Li, School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
Email: [email protected]; [email protected]
Search for more papers by this authorYvhua Wang
School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu, China
Search for more papers by this authorSujuan Pan
School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu, China
Search for more papers by this authorChangqing Wang
School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu, China
Search for more papers by this authorYanzhi Liu
School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu, China
Search for more papers by this authorKun Yuan
School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu, China
Search for more papers by this authorLingling Lv
School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu, China
Search for more papers by this authorCorresponding Author
Zhifeng Li
School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu, China
Correspondence
Huixue Li and Zhifeng Li, School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
Email: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Huixue Li
School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu, China
Correspondence
Huixue Li and Zhifeng Li, School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
Email: [email protected]; [email protected]
Search for more papers by this authorYvhua Wang
School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu, China
Search for more papers by this authorSujuan Pan
School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu, China
Search for more papers by this authorChangqing Wang
School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu, China
Search for more papers by this authorYanzhi Liu
School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu, China
Search for more papers by this authorKun Yuan
School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu, China
Search for more papers by this authorLingling Lv
School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu, China
Search for more papers by this authorCorresponding Author
Zhifeng Li
School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu, China
Correspondence
Huixue Li and Zhifeng Li, School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
Email: [email protected]; [email protected]
Search for more papers by this authorAbstract
The photophysical and photochemical properties of the sulfonyl azide-based fluorescent probe DNS–Az and its reduction product DNS by hydrogen sulfide (H2S) have been investigated theoretically. The calculated results indicated the first excited states of DNS–Az was dark state (oscillator strength less than 0.03) and DNS was bright state (oscillator strength more than 0.1), which determined the predicted radiative rate kr of DNS–Az was much smaller than that of DNS, meanwhile, due to more larger reorganization energy of DNS–Az, its predicted internal conversion rate kic was four times larger than that of DNS; moreover, owing to the effect of heavy atom from sulfur atom in DNS–Az, its predicted intersystem crossing rate kisc was seven times larger than that of DNS, thus the calculated fluorescence quantum yield of DNS–Az was only 2.16% and that of DNS was more than 77.2%, the above factors is the basis for DNS–Az molecule to function as a fluorescent probe. Regarding both DNS-Az and DNS molecules, their maximum Huang-Rhys factors, which are less than unity, signify the reliability of 0–0 transitions between their S0 and S1 electronic states. In addition, for DNS, our simulated emission peak of the 0–0 transition is 515 nm, a value that exhibits enhanced accuracy and coherence when compared to the experimental datum of 528 nm. The reaction mechanism of DNS-Az generating DNS by H2S has been investigated too, according to the potential energy profile, we found that the fluorescent probe firstly protonated, then this organic ion broke down into DNS with the aid of a proton.
CONFLICT OF INTEREST STATEMENT
There are no conflicts of interest to declare.
Open Research
DATA AVAILABILITY STATEMENT
The data that supports the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
jcc27506-sup-0001-Supinfo.docxWord 2007 document , 1.5 MB | FIGURE S1. The bond length of the MECP of DNS–Az and DNS at the B3LYP/6-311G(d,p) level. Figure S2. Frontier MOs of both the compounds at their respective optimized S0 geometries. Table S1. The frequencies of the title compounds with PCM by B3LYP/6–311G (d, p). Table S2. The reorganization energy (λk/cm−1) and Huang-Rhys factor (Sk) between S0 and S1 minima by NMA method with internal coordinate. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1J. J. Loiselle, G. Yang, L. Wu, Br. J. Pharmacol. 2020, 177, 757.
- 2P. Rose, P. K. Moore, Y. Z. Zhu, Cell. Mol. Life Sci. 2017, 74, 1391.
- 3M. Lisjak, T. Teklic, I. D. Wilson, M. Whiteman, J. T. Hancock, Plant Cell Environ. 2013, 36, 1607.
- 4J. L. Kelley, L. Arias-Rodriguez, D. Patacsil Martin, M.-C. Yee, C. D. Bustamante, M. Tobler, Mol. Biol. Evol. 2016, 33, 1419.
- 5M. Tobler, C. N. Passow, R. Greenway, J. L. Kelley, J. H. Shaw, Annu. Rev. Ecol. Evol. Syst. 2016, 47, 239.
- 6D. Dordević, S. Jančíková, M. Vítězová, I. Kushkevych, J. Adv. Res. 2021, 27, 55.
- 7F. Blachier, M. Andriamihaja, P. Larraufie, E. Ahn, A. Lan, E. Kim, Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 320, G125.
- 8M. A. Rahman, B. M. Cumming, K. W. Addicott, H. T. Pacl, S. L. Russell, K. Nargan, T. Naidoo, P. K. Ramdial, J. H. Adamson, R. Wang, PNAS 2020, 117, 6663.
- 9I. Kushkevych, D. Dordević, M. Vítězová, J. Adv. Res. 2021, 27, 71.
- 10I. Kushkevych, D. Dordević, P. Kollar, M. Vítězová, L. Drago, J. Clin. Med. 2019, 8, 1054.
- 11Y.-Z. Wang, E. E. Ngowi, D. Wang, H.-W. Qi, M.-R. Jing, Y.-X. Zhang, C.-B. Cai, Q.-L. He, S. Khattak, N. H. Khan, Int. J. Mol. Sci. 2021, 22, 2194.
- 12H.-J. Sun, Z.-Y. Wu, X.-W. Nie, J.-S. Bian, Front. Pharmacol. 2020, 10, 1568.
- 13D. Pacitti, C. J. Scotton, V. Kumar, H. Khan, P. A. Wark, R. Torregrossa, P. M. Hansbro, M. Whiteman, Antioxid. Redox Signal. 2021, 35, 551.
- 14J. Hou, Y. Huang, L. Fu, M. Sun, L. Wang, R. Guo, L. Chen, C. Lv, Anal. Chem. 2023, 95, 5514.
- 15S. Ahmed, N. A. Abdallah, J. Pharm. Biomed. Anal. 2019, 165, 357.
- 16Y. Jin, R. Liu, Z. Zhan, Y. Lv, Talanta 2019, 202, 159.
- 17H. Li, Y. Fang, J. Yan, X. Ren, C. Zheng, B. Wu, S. Wang, Z. Li, H. Hua, P. Wang, D. Li, TrAC Trends Anal. Chem. 2021, 134, 116117.
- 18B. Peng, M. Xian, Asian J. Org. Chem. 2014, 3, 914.
- 19K. Wang, H. Peng, N. Ni, C. Dai, B. Wang, J. Fluoresc. 2014, 24, 1.
- 20H. Peng, Y. Cheng, C. Dai, A. L. King, B. L. Predmore, D. J. Lefer, B. Wang, Angew. Chem. Int. Ed. 2011, 50, 9672.
- 21Y. Niu, W. Li, Q. Peng, H. Geng, Y. Yi, L. Wang, G. Nan, D. Wang, Z. Shuai, Mol. Phys. 2018, 116, 1078.
- 22R. Hu, S. Lin, M. Wang, R. Li, Z. Shuai, Y. Wei, Chem. Eur. J. 2022, 28, e202103351.
- 23S. Li, X. Jin, Z. Yu, X. Xiao, H. Geng, Q. Liao, Y. Liao, Y. Wu, W. Hu, H. Fu, J. Mater. Chem. C 2021, 9, 7400.
- 24Z. Shuai, Sci. Sin. Chim. 2017, 48, 154.
10.1360/N032017-00147 Google Scholar
- 25Y. Wang, Q. Peng, Z. Shuai, Mater. Horiz. 2022, 9, 334.
- 26L. Tian, sobMECP program. http://sobereva.com/286. Accessed on May 27, 2022
- 27F. Neese, WIREs Comput. Mol. Sci. 2022, 12, e1606.
- 28J.-z. Fan, L.-l. Lin, C.-k. Wang, Chem. Phys. Lett. 2016, 652, 16.
- 29H. Li, X. Wang, K. Yuan, L. Lv, K. Liu, C. Wang, S. Pan, P. Wang, Z. Li, Spectrochim. Acta Part A 2023, 294, 122572.
- 30H. Li, X. Wang, K. Yuan, L. Lv, K. Liu, Z. Li, ACS Omega 2023, 8, 17171.
- 31M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, F. D. Williams, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., GaussView 5.0, Wallingford, CT. 2016.
- 32Y.-R. Cai, C.-H. Hu, J. Phys. Chem. B 2017, 121, 6359.
- 33W. Buijs, I. A. Hussein, M. Mahmoud, A. T. Onawole, M. A. Saad, G. R. Berdiyorov, Ind. Eng. Chem. Res. 2018, 57, 10095.
- 34S. Lin, Q. Ou, Q. Peng, Z. Shuai, J. Chin. Chem. Soc. 2023, 70, 287.
- 35Z. Ma, Q. Sun, J. Zhou, Y. Liu, Z. Shuai, Z. Wang, W. Jiang, ACS Mater. Lett. 2023, 5, 450.
- 36J. Zhang, J. Yang, Y. Zeng, Z.-S. Li, X. Zheng, Mater. Chem. Front. 2023, 7, 545.
- 37J. N. Harvey, M. Aschi, H. Schwarz, W. Koch, Theor. Chem. Accounts 1998, 99, 95.
- 38Z. P. Deng, Y. C. Wang, D. Mou, Y. Sun, H. Da, J. D. Gao, J. Phys. Org. Chem. 2019, 32, e3934.
- 39X. Bokhimi, ACS Omega 2019, 4, 10524.
- 40P. Raghunath, M. C. Lin, J. Phys. Chem. A 2007, 111, 6481.
- 41C. Brito da Silva, E. S. Gil, F. da Silveira Santos, A. M. Morás, L. Steffens, P. F. Bruno Gonçalves, D. J. Moura, D. S. Lüdtke, F. S. Rodembusch, J. Org. Chem. 2018, 83, 15210.
- 42Q. Yuan, Y. Gu, S. Feng, X. Song, J. Mu, B. Li, X. Li, Y. Cai, M. Jiang, L. Yan, J. Li, Z. Jiang, Y. Wei, Y. Ding, ACS Catal. 2022, 12, 4203.
- 43Z. Luan, Y. Fu, Y. Tan, Y. Wang, B. Shan, J. Li, X. Zhou, W. Chen, L. Liu, B. Fu, D. H. Zhang, X. Yang, X. Wang, J. Phys. Chem. Lett. 2022, 13, 8157.
- 44G. S.-M. Tong, C.-M. Che, Chem. Eur. J. 2009, 15, 7225.
- 45G. S. Ming Tong, K. T. Chan, X. Chang, C.-M. Che, Chem. Sci. 2015, 6, 3026.
- 46J. Y. Jiao, X. X. Dong, X. Ran, Q. Y. Deng, H. Xiao, Z. M. Wang, T. Zhang, Phys. Chem. Chem. Phys. 2023, 25, 19932.