CHARMM-GUI Martini Maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides
Pin-Chia Hsu
School of Chemistry, University of Southampton, Southampton, SO17 1BJ United Kingdom
These authors contributed equally to this work
Search for more papers by this authorBart M. H. Bruininks
Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747 The Netherlands
These authors contributed equally to this work
Search for more papers by this authorDamien Jefferies
School of Chemistry, University of Southampton, Southampton, SO17 1BJ United Kingdom
These authors contributed equally to this work
Search for more papers by this authorPaulo Cesar Telles de Souza
Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747 The Netherlands
These authors contributed equally to this work
Search for more papers by this authorJumin Lee
Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
These authors contributed equally to this work
Search for more papers by this authorDhilon S. Patel
Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
Search for more papers by this authorSiewert J. Marrink
Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747 The Netherlands
Search for more papers by this authorCorresponding Author
Yifei Qi
College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
E-mail: [email protected], E-mail: [email protected], E-mail: [email protected]Search for more papers by this authorCorresponding Author
Syma Khalid
School of Chemistry, University of Southampton, Southampton, SO17 1BJ United Kingdom
E-mail: [email protected], E-mail: [email protected], E-mail: [email protected]Search for more papers by this authorCorresponding Author
Wonpil Im
Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
E-mail: [email protected], E-mail: [email protected], E-mail: [email protected]Search for more papers by this authorPin-Chia Hsu
School of Chemistry, University of Southampton, Southampton, SO17 1BJ United Kingdom
These authors contributed equally to this work
Search for more papers by this authorBart M. H. Bruininks
Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747 The Netherlands
These authors contributed equally to this work
Search for more papers by this authorDamien Jefferies
School of Chemistry, University of Southampton, Southampton, SO17 1BJ United Kingdom
These authors contributed equally to this work
Search for more papers by this authorPaulo Cesar Telles de Souza
Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747 The Netherlands
These authors contributed equally to this work
Search for more papers by this authorJumin Lee
Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
These authors contributed equally to this work
Search for more papers by this authorDhilon S. Patel
Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
Search for more papers by this authorSiewert J. Marrink
Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, Groningen, AG, 9747 The Netherlands
Search for more papers by this authorCorresponding Author
Yifei Qi
College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
E-mail: [email protected], E-mail: [email protected], E-mail: [email protected]Search for more papers by this authorCorresponding Author
Syma Khalid
School of Chemistry, University of Southampton, Southampton, SO17 1BJ United Kingdom
E-mail: [email protected], E-mail: [email protected], E-mail: [email protected]Search for more papers by this authorCorresponding Author
Wonpil Im
Departments of Biological Sciences and Bioengineering, Lehigh University, Pennsylvania
E-mail: [email protected], E-mail: [email protected], E-mail: [email protected]Search for more papers by this authorAbstract
A complex cell envelope, composed of a mixture of lipid types including lipopolysaccharides, protects bacteria from the external environment. Clearly, the proteins embedded within the various components of the cell envelope have an intricate relationship with their local environment. Therefore, to obtain meaningful results, molecular simulations need to mimic as far as possible this chemically heterogeneous system. However, setting up such systems for computational studies is far from trivial, and consequently the vast majority of simulations of outer membrane proteins still rely on oversimplified phospholipid membrane models. This work presents an update of CHARMM-GUI Martini Maker for coarse-grained modeling and simulation of complex bacterial membranes with lipopolysaccharides. The qualities of the outer membrane systems generated by Martini Maker are validated by simulating them in bilayer, vesicle, nanodisc, and micelle environments (with and without outer membrane proteins) using the Martini force field. We expect this new feature in Martini Maker to be a useful tool for modeling large, complicated bacterial outer membrane systems in a user-friendly manner. © 2017 Wiley Periodicals, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
jcc24895-sup-0001-suppinfo.pdf4.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Mori, N. Miyashita, W. Im, M. Feig, Y. Sugita, Biochim. Biophys. Acta 2016, 1858, 1635.
- 2H. I. Ingólfsson, C. Arnarez, X. Periole, S. J. Marrink, J. Cell. Sci. 2016, 129, 257.
- 3D. Jefferies, P. C. Hsu, S. Khalid, Biochemistry 2017, 56, 1672.
- 4K. R. Pothula, C. J. Solano, U. Kleinekathöfer, Biochim. Biophys. Acta 2016, 1858, 1760.
- 5S. J. Marrink, D. P. Tieleman, Chem. Soc. Rev. 2013, 42, 6801.
- 6S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, A. H. de Vries, J. Phys. Chem. B 2007, 111, 7812.
- 7M. Lelimousin, V. Limongelli, M. S. Sansom, J. Am. Chem. Soc. 2016, 138, 10611.
- 8M. N. Melo, C. Arnarez, H. Sikkema, N. Kumar, M. Walko, H. J. Berendsen, A. Kocer, S. J. Marrink, H. I. Ingólfsson, J. Am. Chem. Soc. 2017, 139, 2664.
- 9F. J. van Eerden, M. N. Melo, P. W. J. M. Frederix, X. Periole, S. J. Marrink, Nat. Commun. 2017, 8, 15214.
- 10Y. A. Knirel, M. A. Valvano, Bacterial Lipopolysaccharides; Springer: Vienna, 2011.
10.1007/978-3-7091-0733-1 Google Scholar
- 11M. P. Bos, V. Robert, J. Tommassen, Annu. Rev. Microbiol. 2007, 61, 191.
- 12N. Ruiz, D. Kahne, T. J.Silhavy, Nat Rev. Microbiol. 2006, 4, 57.
- 13J. Parkin, M. Chavent, S. Khalid, Biophys. J. 2015, 109, 461.
- 14H. Nikaido, Pharmacol. Ther. 1985, 27, 197.
- 15H. Nikaido, Microbiol. Mol. Biol. Rev. 2003, 67, 593.
- 16D. S. Patel, S. Re, E. L. Wu, Y. Qi, P. E. Klebba, G. Widmalm, M. S. Yeom, Y. Sugita, W. Im, Biophys. J. 2016, 110, 930.
- 17T. J. Piggot, D. A. Holdbrook, S. Khalid, J. Phys. Chem. B 2011, 115, 13381.
- 18E. L. Wu, P. J. Fleming, M. S. Yeom, G. Widmalm, J. B. Klauda, K. G. Fleming, W. Im, Biophys. J. 2014, 106, 2493.
- 19S. Khalid, N. A. Berglund, D. A. Holdbrook, Y. M. Leung, J. Parkin, Biochem. Soc. Trans. 2015, 43, 162.
- 20D. S. Patel, Y. Qi, W. Im, Curr. Opin. Struct. Biol. 2017, 43, 131.
- 21A. Pavlova, H. Hwang, K. Lundquist, C. Balusek, J. C. Gumbart, Biochim. Biophys. Acta 2016, 1858, 1753.
- 22S. Kim, D. S. Patel, S. Park, J. Slusky, J. B. Klauda, G. Widmalm, W. Im, Biophys. J. 2016, 111, 1750.
- 23P. J. Fleming, D. S. Patel, E. L. Wu, Y. Qi, M. S. Yeom, M. C. Sousa, K. G. Fleming, W. Im, Biophys. J. 2016, 110, 2698.
- 24D. A. Holdbrook, T. J. Piggot, M. S. Sansom, S. Khalid, Biochim. Biophys. Acta 2013, 1828, 715.
- 25J. Lee, D. S. Patel, I. Kucharska, L. K. Tamm, W. Im, Biophys. J. 2017, 112, 346.
- 26T. J. Piggot, D. A. Holdbrook, S. Khalid, Biochim. Biophys. Acta 2013, 1828, 284.
- 27S. Jo, E. L. Wu, D. Stuhlsatz, J. B. Klauda, A. D. MacKerell, Jr., G. Widmalm, W. Im, Methods Mol. Biol. 2015, 1273, 391.
- 28H. Ma, F. J. Irudayanathan, W. Jiang, S. Nangia, J. Phys. Chem. B 2015, 119, 14668.
- 29B. Van Oosten, T. A. Harroun, J. Mol. Graph. Model. 2016, 63, 125.
- 30S. Jo, T. Kim, V. G. Iyer, W. Im, J. Comput. Chem. 2008, 29, 1859.
- 31E. L. Wu, X. Cheng, S. Jo, H. Rui, K. C. Song, E. M. Davila-Contreras, Y. Qi, J. Lee, V. Monje-Galvan, R. M. Venable, J. B. Klauda, W. Im, J. Comput. Chem. 2014, 35, 1997.
- 32S. Jo, J. B. Lim, J. B. Klauda, W. Im, Biophys. J. 2009, 97, 50.
- 33X. Cheng, S. Jo, H. S. Lee, J. B. Klauda, W. Im, J. Chem. Inf. Model. 2013, 53, 2171.
- 34Y. Qi, H. I. Ingólfsson, X. Cheng, J. Lee, S. J. Marrink, W. Im, J. Chem. Theory Comput. 2015, 11, 4486.
- 35P. C. Hsu, D. Jefferies, S. Khalid, J. Phys. Chem. B 2016, 120, 11170.
- 36J. A. Graham, J. W. Essex, S. Khalid, J. Chem. Inf. Model. 2017, 57, 650.
- 37R. T. Coughlin, S. Tonsager, E. J. McGroarty, Biochemistry 1983, 22, 2002.
- 38M. Schindler, M. J. Osborn, Biochemistry 1979, 18, 4425.
- 39L. van Alphen, A. Verkleij, J. Leunissen-Bijvelt, B. Lugtenberg, J. Bacteriol. 1978, 134, 1089.
- 40E. L. Wu, O. Engstrom, S. Jo, D. Stuhlsatz, M. S. Yeom, J. B. Klauda, G. Widmalm, W. Im, Biophys. J. 2013, 105, 1444.
- 41T. A. Wassenaar, H. I. Ingólfsson, R. A. Bockmann, D. P. Tieleman, S. J. Marrink, J. Chem. Theory. Comput. 2015, 11, 2144.
- 42M. Dahlberg, A. Maliniak, J. Chem. Theory Comput. 2010, 6, 1638.
- 43M. Pannuzzo, D. H. de Jong, A. Raudino, S. J. Marrink, J. Chem. Phys. 2014, 140, 124905.
- 44S. J. Marrink, A. H. de Vries, A. E. Mark, J. Phys. Chem. B 2004, 108, 750.
- 45L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson, D. P. Tieleman, S. J. Marrink, J. Chem. Theory Comput. 2008, 4, 819.
- 46X. Periole, M. Cavalli, S. J. Marrink, M. A. Ceruso, J. Chem. Theory Comput. 2009, 5, 2531.
- 47D. H. de Jong, S. Baoukina, H. I. Ingólfsson, S. Marrink, J. Comput. Phys. Commun. 2016, 199, 1.
- 48M. J. Abraham, T. Murtola, R. Schulz, S. Pall, J. C. Smith, B. Hess, E. Lindahl, SoftwareX 2015, 1–2, 19.
10.1016/j.softx.2015.06.001 Google Scholar
- 49E. J. Lugtenberg, R. Peters, Biochim. Biophys. Acta 1976, 441, 38.
- 50A. Pautsch, G. E. Schulz, J. Mol. Biol. 2000, 298, 273.
- 51R. G. Efremov, L. A. Sazanov, J. Struct. Biol. 2012, 178, 311.
- 52M. P. Molloy, B. R. Herbert, M. B. Slade, T. Rabilloud, A. S. Nouwens, K. L. Williams, A. A. Gooley, Eur. J. Biochem. 2000, 267, 2871.
- 53F. C. Neidhardt, J. L. Ingraham, M. Schaechter, Physiology of the Bacterial Cell. A Molecular Approach; Sinauer associates: Sunderland, MA, 1990.
- 54M. A. Lomize, A. L. Lomize, I. D. Pogozheva, H. I. Mosberg, Bioinformatics 2006, 22, 623.
- 55N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, O. Beckstein, J. Comput. Chem. 2011, 32, 2319.
- 56W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14, 33., 27.
- 57H. J. Risselada, A. E. Mark, S. J. Marrink, J. Phys. Chem. B 2008, 112, 7438.
- 58S. Buchoux, Bioinformatics 2017, 33, 133.
- 59D. A. Holdbrook, R. G. Huber, T. J. Piggot, P. J. Bond, S. Khalid, PLoS One 2016, 11, e0156963.
- 60S. O. Yesylevskyy, L. V. Schafer, D. Sengupta, S. J. Marrink, PLoS Comput. Biol. 2010, 6, e1000810.
- 61S. Bibow, Y. Polyhach, C. Eichmann, C. N. Chi, J. Kowal, S. Albiez, R. A. McLeod, H. Stahlberg, G. Jeschke, P. Guntert, R. Riek, Nat. Struct. Mol. Biol. 2017, 24, 187.
- 62I. G. Denisov, S. G. Sligar, Chem. Rev. 2017, 117, 4669.
- 63I. G. Denisov, S. G. Sligar, Nat. Struct. Mol. Biol. 2016, 23, 481.
- 64M. Mueller, B. Lindner, S. Kusumoto, K. Fukase, A. B. Schromm, U. Seydel, J. Biol. Chem. 2004, 279, 26307.
- 65H. Sasaki, S. H. White, Biophys. J. 2008, 95, 986.
- 66K. Brandenburg, U. Seydel, Eur. J. Biochem. 1990, 191, 229.
- 67N. C. Santos, A. C. Silva, M. A. Castanho, J. Martins-Silva, C. Saldanha, ChemBioChem 2003, 4, 96.
- 68S. G. Wilkinson, Prog. Lipid Res. 1996, 35, 283.
- 69R. X. Gu, H. I. Ingólfsson, A. H. de Vries, S. J. Marrink, D. P. Tieleman, J. Phys. Chem. B 2017, 121, 3262.
- 70S. Jo, X. Cheng, J. Lee, S. Kim, S. J. Park, D. S. Patel, A. H. Beaven, K. I. Lee, H. Rui, S. Park, H. S. Lee, B. Roux, A. D. MacKerell, Jr., J. B. Klauda, Y. Qi, W. Im, J. Comput. Chem. 2017, 38, 1114.