Accelerating molecular modeling applications with graphics processors
John E. Stone
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
The authors contributed equally
Search for more papers by this authorJames C. Phillips
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
The authors contributed equally
Search for more papers by this authorLydia Freddolino
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
The authors contributed equally
Search for more papers by this authorDavid J. Hardy
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
The authors contributed equally
Search for more papers by this authorLeonardo G. Trabuco
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
Search for more papers by this authorCorresponding Author
Klaus Schulten
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801Search for more papers by this authorJohn E. Stone
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
The authors contributed equally
Search for more papers by this authorJames C. Phillips
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
The authors contributed equally
Search for more papers by this authorLydia Freddolino
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
The authors contributed equally
Search for more papers by this authorDavid J. Hardy
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
The authors contributed equally
Search for more papers by this authorLeonardo G. Trabuco
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
Search for more papers by this authorCorresponding Author
Klaus Schulten
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801Search for more papers by this authorAbstract
Molecular mechanics simulations offer a computational approach to study the behavior of biomolecules at atomic detail, but such simulations are limited in size and timescale by the available computing resources. State-of-the-art graphics processing units (GPUs) can perform over 500 billion arithmetic operations per second, a tremendous computational resource that can now be utilized for general purpose computing as a result of recent advances in GPU hardware and software architecture. In this article, an overview of recent advances in programmable GPUs is presented, with an emphasis on their application to molecular mechanics simulations and the programming techniques required to obtain optimal performance in these cases. We demonstrate the use of GPUs for the calculation of long-range electrostatics and nonbonded forces for molecular dynamics simulations, where GPU-based calculations are typically 10–100 times faster than heavily optimized CPU-based implementations. The application of GPU acceleration to biomolecular simulation is also demonstrated through the use of GPU-accelerated Coulomb-based ion placement and calculation of time-averaged potentials from molecular dynamics trajectories. A novel approximation to Coulomb potential calculation, the multilevel summation method, is introduced and compared with direct Coulomb summation. In light of the performance obtained for this set of calculations, future applications of graphics processors to molecular dynamics simulations are discussed. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007
References
- 1 McCammon, J. A.;Gelin, B. R.;Karplus, M. Nature 1977, 267, 585.
- 2 Sanbonmatsu, K. Y.;Joseph, S.;Tung, C. S. Proc Natl Acad Sci USA 2005, 102, 15854.
- 3 Freddolino, L.;Arkhipov, A. S.;Larson, S. B.;McPherson, A.;Schulten, K. Structure 2006, 14, 437.
- 4 Yeh, I.;Hummer, G. J Am Chem Soc 2002, 124, 6563.
- 5 Duan, Y.;Kollman, P. Science 1998, 282, 740.
- 6 Adcock, S. A.;McCammon, J. A. Chem Rev 2006, 106, 1589.
- 7 Horn, D. R.;Houston, M.;Hanrahan, P. In Proceedings of the 2005 ACM/IEEE Conference on Supercomputing. Washington, DC, 2005; IEEE Computer Society; p. 11.
- 8 Elsen, E.;Houston, M.;Vishal, V.;Darve, E.;Hanrahan, P.;Pande, V. In SC06 Proceedings; IEEE Computer Society, 2006.
- 9 Yang, J.;Wang, Y.;Chen, Y. J Comput Phys 2007, 221, 799.
- 10 Humphrey, W.;Dalke, A.;Schulten, K. J Mol Graphics 1996, 14, 33.
- 11 Phillips, J. C.;Braun, R.;Wang, W.;Gumbart, J.;Tajkhorshid, E.;Villa, E.;Chipot, C.;Skeel, R. D.;Kale, L.;Schulten, K. J Comp Chem 2005, 26, 1781.
- 12
Beetem, J.;Denneau, M.;Weingarten, D.
SIGARCH Comput Archit News
1985,
13(
3),
108.
10.1145/327070.327139 Google Scholar
- 13 Blank, T. In Compcon Spring '90. ‘Intellectual Leverage’. Digest of Papers. Thirty-Fifth IEEE Computer Society International Conference. San Francisco, CA, 1990; IEEE Computer Society; pp. 20–24.
- 14 Tucker, L. W.;Robertson, G. G. Computer 1988, 21, 26.
- 15 Ungerer, T.;Robic, B.;Silc, J. ACM Comput Surv 2003, 35, 29.
- 16
Allen, J. D.;Schimmel, D. E.
IEEE Trans Parallel Distrib Syst
1996,
7,
818.
10.1109/71.532113 Google Scholar
- 17 Weems, C. In Proceedings of the 1997 Computer Architectures for Machine Perception (CAMP, '97), Washington, DC, 1997; IEEE Computer Society; p. 235.
- 18 NVIDIA CUDA Compute Unified Device Architecture Programming Guide; NVIDIA: Santa Clara, CA, 2007.
- 19 He, Y.;Ding, C. H. Q. In ICS '00: Proceedings of the 14th International Conference on Supercomputing; ACM Press: New York, 2000; pp. 225–234.
- 20
Bailey, D. H.
Computing in Science and Engineering
2005,
07,
54.
10.1109/MCSE.2005.52 Google Scholar
- 21 Kirk, D.;Hwu, W. University of Illinois at Urbana-champaign, ECE 498 AL Lecture Notes, 2007.
- 22 Buck, I.;Foley, T.;Horn, D.;Sugerman, J.;Fatahalian, K.;Houston, M.;Hanrahan, P. In SIGGRAPH '04: ACM SIGGRAPH 2004 Papers; ACM Press: New York, 2004; pp. 777–786.
- 23 Buck, I. Stream Computing on Graphics Hardware, PhD Thesis, Stanford University, Stanford, CA, 2005.
- 24 Charalambous, M.;Trancoso, P.;Stamatakis, A. In Panhellenic Conference on Informatics, 2005, pages 415–425.
- 25 Owens, J. D.;Luebke, D.;Govindaraju, N.;Harris, M.;Krger, J.;Lefohn, A. E.;Purcell, T. J. Computer Graphics Forum 2007, 26, 80.
- 26 Barnes, J.;Hut, P. Nature 1986, 324, 446.
- 27 Greengard, L.;Rokhlin, V. J Comp Phys 1987, 73, 325.
- 28 Board, J. A.,Jr.;Causey, J. W.;Leathrum, J. F.,Jr.;Windemuth, A.;Schulten, K. Chem Phys Lett 1992, 198, 89.
- 29 Cheng, H.;Greengard, L.;Rokhlin, V. J Chem Phys 1999, 155, 468.
- 30 Hockney, R. W.;Eastwood, J. W. Computer Simulation Using Particles; McGraw-Hill: New York, 1981.
- 31 Pollock, E. L.;Glosli, J. Comput Phys Commun 1996, 95, 93.
- 32 Darden, T.;York, D.;Pedersen, L. J Chem Phys 1993, 98, 10089.
- 33 Essmann, U.;Perera, L.;Berkowitz, M. L.;Darden, T.;Lee, H.;Pedersen, L. G. J Chem Phys 1995, 103, 8577.
- 34 Skeel, R. D.;Tezcan, I.;Hardy, D. J. J Comp Chem 2002, 23, 673.
- 35 Hardy, D. J. Multilevel Summation for the Fast Evaluation of Forces for the Simulation of Biomolecules, PhD Thesis, University of Illinois at Urbana-Champaign, 2006.
- 36 Brandt, A.;Lubrecht, A. A. J Comput Phys 1990, 90, 348.
- 37 Sandak, B. J Comp Chem 2001, 22, 717.
- 38 Brandt, A. In Proc. IMACS 1st Int. Conf. on Comp. Phys. Boulder, CO, 1991.
- 39 Skeel, R. D.;Biesiadecki, J. J. Ann Numer Math 1994, 1, 191.
- 40 Fox, G. C.;Johnson, M. A.;Lyzenga, G. A.;Otto, S. W.;Salmon, J. K.;Walker, D. W. Solving Problems on Concurrent Processors, vol. 1; Prentice Hall: Englewood Cliffs, NJ, 1988.
- 41 Buck, I. In IEEE Visualization 2004 GPGPU Tutorial. IEEE Computer Society, 2004.
- 42 Kupka, S. In Central European Seminar on Computer Graphics 2006, 2006.
- 43 Snow, C. D.;Nguyen, H.;Pande, V. S.;Gruebele, M. Nature 2002, 420, 102.
- 44 Sotomayor, M.;Schulten, K. Biophys J 2004, 87, 3050.
- 45
Auffinger, P.;Westhof, E.
J Mol Biol
1999,
269,
326.
10.1006/jmbi.1997.1022 Google Scholar
- 46 Walser, R.;Hünenberger, P. H.;van Gunsteren, W. F. Proteins: Struct Func Gen 2001, 43, 509.
- 47 Hermann, T.;Westhof, E. Structure 1998, 6, 1303.
- 48 Soares, C. M.;Teixeira, V. H.;Baptista, A. M. Biophys J 2003, 84, 1628.
- 49 Grubmüller, H. SOLVATE 1.0 manual, 1996.
- 50 Vitalis, A.;Baker, N. A.;McCammon, J. Mol Sim 2004, 30, 45.
- 51 Wang, N.;Butler, J. P.;Ingber, D. E. Science 1993, 260, 1124.
- 52 Tinoco, I.,Jr.;Kieft, J. S. Nat Struct Biol 1997, 4, 509.
- 53 Misra, V. K.;Draper, D. E. Biopolymers 1999, 48, 113.
- 54 Klein, D. J.;Moore, P. M.;Steitz, T. A. RNA 2004, 10, 1366.
- 55 Cusack, S. Curr Opin Struct Biol 1999, 9, 66.
- 56 Vianna, A. L. Biochim Biophys Acta 1975, 410, 389.
- 57 Réblová, K.;Špačková, N.;Koča, J.;Leontis, N. B.;Šponer, J. Biophys J 2004, 87, 3397.
- 58 Misra, V. K.;Draper, D. E. J Mol Biol 2000, 299, 813.
- 59 Misra, V. K.;Draper, D. E. Proc Natl Acad Sci USA 2001, 98, 12456.
- 60 Foloppe, N.;MacKerrell, A. D.,Jr.; J Comp Chem 2000, 21, 86.
- 61 Baker, N. A.;Sept, D.;Joseph, S.;Holst, M. J.;McCammon, J. A. Proc Natl Acad Sci USA 2001, 98, 10037.
- 62 Silvian, L. F.;Wang, J.;Seitz, T. A. Science 1999, 285, 1074.
- 63 Cate, J. H.;Gooding, A. R.;Podell, E.;Zhou, K.;Golden, B. L.;Kundrot, C. E.;Cech, T. R.;Doudna, J. A. Science 1996, 273, 1678.
- 64 Ferré-D'Amaré, A. R.;Zhou, K.;Doudna, J. A. Nature 1998, 395, 567.
- 65 MacKerell,Jr., A. D.;Brooks, B.;Brooks,III, C. L.;Nilsson, L.;Roux, B.;Won, Y.;Karplus, M. In The Encyclopedia of Computational Chemistry, P. Schleyer et al., Eds.; John Wiley: Chichester, 1998; pp. 271–277.
- 66 Fitzpatrick, P. A.;Steinmetz, A. C. U.;Ringe, D.;Klibanov, A. M. Proc Natl Acad Sci USA 1993, 90, 8653.
- 67 Lucas, R. W.;Larson, S. B.;McPherson, A. J Mol Biol 2002, 317, 95.
- 68 Eecen, H. G.;Dierendonck, J. H. V.;Pleij, C. W. A.;Mandel, M.;Bosch, L. Biochemistry 1985, 24, 3610.
- 69 Larson, S. B.;McPherson, A. Curr Opin Struct Biol 2001, 11, 59.
- 70
Blaha, G. In
Protein Synthesis and Ribosome Structure;
K. H. Nierhaus; D. H. Wilson, Eds.;
Wiley-VCH:
Weinheim, Germany,
2004; pp.
53–84.
10.1002/3527603433.ch2 Google Scholar
- 71 Selmer, M.;Dunham, C. M.;Murphy, F. V.,IV;Weixlbaumer, A.;Petry, S.;Kelley, A. C.;Weir, J. R.;Ramakrishnan, V. Science 2006, 313, 1935.
- 72 You, T. J.;Bashford, D. Biophys J 1995, 69, 1721.
- 73 Aksimentiev, A.;Schulten, K. Biophys J 2005, 88, 3745.
- 74 Ahn, J. H.;Erez, M.;Dally, W. In HPCA-11. 11th International Symposium on High-Performance Computer Architecture, IEEE Computer Society, 2005. pp. 132–142.
- 75
Tomov, S.;McGuigan, M.;Bennett, R.;Smith, G.;Spiletic, J.
Comp and Graph
2005,
29,
71.
10.1016/j.cag.2004.11.008 Google Scholar
- 76
Morris, G. M.;Goodsell, D. S.;Halliday, R. S.;Huey, R.;Hart, W. E.;Belew, R. K.;Olson, A. J.
J Comp Chem
1998,
19,
1639.
10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B CAS Web of Science® Google Scholar
- 77 Zou, X.;Sun, Y.;Kuntz, I. D. J Am Chem Soc 1999, 121, 8033.
- 78 Cohen, J.;Kim, K.;King, P.;Seibert, M.;Schulten, K. Structure 2005, 13, 1321.